
∗ Published in: Journal of Heuristics, 2023. DOI: 10.1007/s10732-023-09518-7

Solving Travelling Thief Problems using Coordination Based Methods
Majid Namazi 1,2, M.A. Hakim Newton 2,3, Conrad Sanderson 1,2, Abdul Sattar 2

1 Data61 / CSIRO, Australia
2 Griffith University, Australia
3 University of Newcastle, Australia

Abstract
A travelling thief problem (TTP) is a proxy to real-life problems such as postal collection. TTP comprises an entanglement of a
travelling salesman problem (TSP) and a knapsack problem (KP) since items of KP are scattered over cities of TSP, and a thief
has to visit cities to collect items. In TTP, city selection and item selection decisions need close coordination since the thief’s
travelling speed depends on the knapsack’s weight and the order of visiting cities affects the order of item collection. Existing TTP
solvers deal with city selection and item selection separately, keeping decisions for one type unchanged while dealing with the
other type. This separation essentially means very poor coordination between two types of decision. In this paper, we first show
that a simple local search based coordination approach does not work in TTP. Then, to address the aforementioned problems, we
propose a human designed coordination heuristic that makes changes to collection plans during exploration of cyclic tours. We
further propose another human designed coordination heuristic that explicitly exploits the cyclic tours in item selections during
collection plan exploration. Lastly, we propose a machine learning based coordination heuristic that captures characteristics of
the two human designed coordination heuristics. Our proposed coordination based approaches help our TTP solver significantly
outperform existing state-of-the-art TTP solvers on a set of benchmark problems. Our solver is named Cooperation Coordination
(CoCo) and its source code is available from https://github.com/majid75/CoCo

1 Introduction
Travelling salesman problem (TSP) and knapsack problem (KP) are two well-known NP-Hard combinatorial optimisation problems.
In TSP [18], a salesman performs a cyclic tour through a set of cities with a goal of minimising the length (or hence the travelling
time) of the cyclic tour. In KP [20], using a collection plan, a knapsack with a given capacity is filled in with a subset of given
profitable items with a goal of maximising the total profit.

TSP and KP are classical problems. However, real-world applications such as postal or waste collection problems [26, 35, 19]
need more complex problem models in which both TSP and KP characteristics are intrinsically and interdependently present
simultaneously. Problems in which KP items are scattered over TSP cities are modelled in various ways such as cumulative
capacitated routing problem [32], orienteering problem [40], and selective/prize collecting travelling salesman problem [3, 22]. In
some of these models, instead of a single tour, multiple tours are involved while in some other models, a city might not be visited if
no item is collected from the city.

In this paper, we study a particular problem model named travelling thief problem [5] that essentially encompasses both TSP
and KP characteristics in an entangled fashion. In an example problem having this kind of model, a postal truck mandatorily visits
each city to collect letters. Moreover, the postal truck makes profits as it optionally collects heavy parcels from the cities. However,
the gradual change in the truck load as the truck picks heavy parcels affects its travelling speed between cities, and hence affect the
travelling time, fuel consumption, air pollution, and travelling cost. A solution for such a problem is a mandatory cyclic tour of
cities to be visited successively with a sequence of optional services to be given at the cities such that the total profit made minus
the total cost incurred is maximised.

In a travelling thief problem (TTP), a thief (i) rents a knapsack having a certain capacity at a given renting cost per unit of
time, (ii) performs a cyclic tour through a set of cities, and (iii) collects a subset of profitable items in the knapsack with the
objective of maximising the net profit, which equals total profit minus total cost. The entanglement of TSP and KP in TTP comes
from two factors: (i) As the thief collects more items, the knapsack gets heavier, the thief gets slower, the tour takes longer time,
and the knapsack rent goes up; and (ii) the order of cities in the tour affects the order of items that could be collected without
exceeding the knapsack capacity. TTP is a multi-component problem since it has both TSP and KP as components. Solving such
multi-component problems is more challenging because finding an optimal overall solution to a multi-component problem cannot
be guaranteed by simply finding an optimal solution to each underlying component [28, 27, 7].

https://doi.org/10.1007/s10732-023-09518-7
https://github.com/majid75/CoCo

TTP solving methods have obtained some progress over the years but further improvement is needed. Here we summarise five
types of TTP methods in the context of the paper but a detailed exploration is presented later. Constructive methods [34, 6, 26, 17]
use Chained Lin-Kernighan heuristic [2] to get a cyclic tour and then use various heuristics to construct a collection plan. Fixed
tour methods [23, 34, 17, 44, 35] generate cyclic tours like constructive methods and then use exact or approximate methods to
find collection plans. Cooperative methods [6, 13, 43, 15, 31, 46] iteratively alternate between a search for a cyclic tour and
another search of a collection plan, keeping one of the two unchanged while searching for the other until no further improvement.
Full-encoding methods [26, 42, 13, 14, 45] deals with the entire TTP problem at a time using cyclic tour and collection plan
changing operators within the same search framework. Hyper-heuristic methods [1, 25, 24, 16] generate or select low level
heuristics as neighbourhood operators for cyclic tours or collection plans and use them in search.

Given the TTP literature summarised above, one aspect common among all approaches is that the search for one component’s
solution (cyclic tour or collection plan) takes only the other component’s unchanged current solution (collection plan or cyclic tour)
into account. Moreover, some approaches adopts an iterative strategy to alternate between the aforementioned neighbourhood
operators for the two components. However, even these approaches might not really help get the overall search direction best
for solving the entire multi-component problem. The reason is for the best solution of the entire problem, solutions for the two
components, at the same time, should mutually best correspond to each other. Note that the coordination issue has been partially
addressed by exact evaluation of the collection plans or city selections in related problems other than TTP and such problems
include generalized traveling salesman problem [4], cumulative capacitated vehicle routing problem [32], and vehicle routing
problems with profits [41]. However, such exact evaluation via dynamic programming or labelling algorithms is usually costly and
do not scale well for large problems. Ideally, a heuristic based cheaper but strong coordination method is needed between solving
methods for the TSP and KP components in TTP meaning any considerable change on one component’s solution should take into
account the other component’s all possible future solutions subject to the one component’s same solution.

In this paper, we first show that even a simple local search based coordination approach, let alone an exact evaluation based
approach, is not effective in addressing the poor coordination issue in existing TTP methods. Then, we propose a human designed
coordination heuristic that makes changes to collection plans during exploration of cyclic tours. We also propose another human
designed coordination heuristic that explicitly exploits the cyclic tours in item selections during collection plan exploration. We
further propose a machine learning based coordination heuristic that captures characteristics of the two human designed coordination
heuristics. Our proposed coordination heuristics explore potentially better TTP solutions than the approaches exhibiting poor
coordination. We empirically evaluate the effectiveness of our proposed approaches. On a set of benchmark problems, our
proposed approaches help our coordination based TTP solver significantly outperform existing state-of-the-art TTP solvers. Our
TTP solver is named Cooperation Coordination (CoCo) and it is available from https://github.com/majid75/CoCo.

We note that this paper thoroughly extends our previous preliminary work [30] that has presented an early version of our human
designed cyclic tour exploration coordination heuristic. In this paper, we have considerably revised the human designed heuristic.
Furthermore, we have designed two cyclic tour exploration coordination heuristics: (i) a local search based heuristic and (ii) a
machine learning based heuristic. Next, we have designed a coordination based collection plan heuristic. Moreover, we have
described our proposed approaches more formally and in greater details.

We continue the paper as follows. Section 2 covers preliminaries. Section 3 explores related work. Section 4 describes the
search framework used. Section 5 describes the proposed coordination heuristics. Section 6 presents the experimental results.
Section 7 presents the conclusions.

2 Preliminaries
We formally define TSP, KP, and TTP. We describe the neighbourhood operators 2OPT for TSP and BitFlip for KP. We also define
the prefix minimum and suffix maximum functions to help describe TTP coordination heuristics.

2.1 Travelling Salesman Problem
Assume a set C = {1, . . . , n} of n > 1 cities. The distance between each two cities c ̸= c′ is d(c, c′) = d(c′, c). In TSP, a
salesman starts travelling from city 1 and visits each other city exactly once and returns back to city 1. The salesman thus completes
a non-overlapping cyclic tour through all cities. For a given set C of cities, assume t = ⟨t0, t1, . . . , tn⟩ is a cyclic tour with
t0 = tn = 1, and tk = c iff t(c) = k, where c ∈ C \ {1} is a city and k ∈ [1, n − 1] is a position. No city in C \ {1} can be
visited more than once in a cyclic tour t. So we have tk ̸= tk′ for any k ̸= k′ where k, k′ ∈ [1, n− 1]. Given a cyclic tour t, the
total distance travelled by the salesman is D(t) =

∑k<n
k=0 d(tk, tk+1).

Definition 1 (TSP). Given a set C of cities, distance d(c, c′) between each pair of cities c ̸= c′, find a cyclic tour t for a salesman
such that the objective total distance D(t) is minimised. Note that the objective could be the total travelling time if the travelling
speed is constant between each two cities.

https://github.com/majid75/CoCo

Given a cylic tour t, a tour segment t[b, e] = ⟨tb, . . . , te⟩ of length |t[b, e]| = e− b+ 1 with 0 < b < e < n comprises cities
in t between positions b and e both inclusive. In TSP, a tour segment reversal operator 2OPT [8] is often used in generating a
neighbouring tour from a given tour.

Definition 2 (2OPT). Given a cyclic tour t and positions b and e such that 0 < b < e < n, a 2OPT(t, b, e) operator reverses the
tour segment t[b, e] of length |e− b+ 1|. So 2OPT essentially reverses the order of cities between positions b and e to produce a
new tour t′. Thus, t′b+k = te−k is obtained for 0 ≤ k ≤ e− b taking O(e− b) time. Any other city at position k ̸∈ [b, e] remains
at the same position, i.e. t′k = tk.

Lemma 1 (2OPT for TSP). Given a cyclic tour t in TSP, a 2OPT(t, b, e) operator produces a new cyclic tour t′ for which
computing D(t′) = D(t) + d(tb−1, te) + d(tb, te+1)− d(tb−1, tb)− d(te, te+1) takes O(1) time, when D(t) is already known.

2.2 Knapsack Problems
Assume a set I = {1, . . . ,m} of m > 0 items. Each item has weight wi > 0 and profit πi > 0. Assume p = ⟨p1, p2, . . . , pm⟩ ≡
{i : pi = 1} is a collection plan with pi ∈ {0, 1} for each item i, where pi = 1 means i is a collected item and pi = 0 means i is
an uncollected item. Assume the knapsack has weight capacity W > 0. For a given collection plan p, the total weight of the
knapsack is W (p) =

∑i=m
i=1 wipi, the knapsack constraint is K(p) ≡ W (p) ≤ W , and the total profit of the collected items is

P (p) =
∑i=m

i=1 πipi.

Definition 3 (KP). Given a set I of items with weight wi and profit πi for each item i and also the knapsack capacity W , find a
collection plan p such that the objective total profit P (p) is maximised subject to the knapsack constraint K(p) ≡W (p) ≤W .

In KP, an item selection operator BitFlip [34] is often used in generating a neihbouring collection plan from a given one.

Definition 4 (BitFlip). Given a collection plan p and an item i, a BitFlip(p, i) operator flips pi from 0 to 1 or vice versa to produce
a new collection plan p′ taking O(1) time.

Lemma 2 (BitFlip for KP). Given a collection plan p in KP, a BitFlip(p, i) operator produces a new collection plan p′ with
P (p′) = P (p) + πi × (p′i − pi). Here, computation of P (p′) takes O(1) time when P (p) is already known.

For convenience of exposition and for the sake of formality, below we define pick and unpick operations for collection plans in
KP.

Definition 5 (Pick and Unpick). Given a collection plan p in KP, picking an item i is when pi = 0 and BitFlip(p, i) is applied.
Moreover, unpicking an item i is when pi = 1 and BitFlip(p, i) is applied on a collection p.

2.3 Travelling Thief Problems
We start with all the notations and terminologies used for TSP and KP in Sections 2.1 and 2.2 respectively. However, the salesman
in TSP is viewed as the thief in TTP, the items in KP are scattered over the cities in TTP, and the thief travels around to collect the
items. Moreover, the travelling speed in TTP gets slower as the theif collects items and the knapsack gets heavier.

Assume, in TTP, each item i is collected from a city li and a city c has a set I(c) = {i : li = c} of items. However, the
designated city 1, where the cyclic tour t of the thief starts from and ends at, arguably does not have any item since such an item
could be collected without any travelling. So, li > 1 for any item i and I(1) = {}. A TTP solution ⟨t, p⟩ comprises a cyclic tour t
and a collection plan p. An item i in a city li has a position t(li) in a cyclic tour t.

Assume the thief in TTP rents a knapsack of weight capacity W > 0 at a renting rate of R > 0 per unit of time. For
a given collection plan p, also assume the total weight of the items collected from city c is wp(c) =

∑
i∈I(c) wipi. Further,

assume that wt,p(k) =
∑k′=k

k′=0 wp(tk′) denotes the weight of the knapsack after collecting items from cities up to position k

in the tour t using a collection plan p for a TTP solution ⟨t, p⟩. Assume a speed function s(w) = smax − w
W × (smax − smin)

for the current knapsack weight w ≤ W , where the given maximum and minimum speed limits of the thief are smax and smin

respectively with smax ≥ smin. So for a TTP solution ⟨t, p⟩, the thief travels from city tk to tk+1 with the knapsack weight
wt,p(k) and with a travelling speed st,p(k) = s(wt,p(k)). Moreover, the travelling time up to the position k in the cyclic tour t is
τt,p(k) =

∑k′<k
k′=0 d(tk′ , tk′+1)/st,p(k

′) and the total travelling time is T (t, p) = τt,p(n) =
∑k<n

k=0 d(tk, tk+1)/st,p(k). Hence,
the total renting cost of the knapsack is R(t, p) = R × T (t, p), and so the net profit is N(t, p) = P (p) − R(t, p). In TTP, we
have to maximise the objective N(t, p) over all possible cyclic tours t and all possible collection plans p subject to the knapsack
constraint K(p) ≡W (p) ≤W .

Definition 6 (TTP). Given a set C of cities, a set I of items, distance d(c, c′) between each pair of cities c ̸= c′, weight wi and
profit πi for each item i available in city li, the knapsack capacity W , the knapsack renting rate R, a speed function s(w) with
smax and smin as the maximum and the minimum speeds respectively, find a solution ⟨t, p⟩ comprising a cyclic tour t and a
collection plan p such that the objective N(t, p) is maximised subject to the knapsack constraint K(p).

Figure 1 shows a TTP example, a solution, and the objective computation.
Although we do not claim any contribution, we prove relations of TTP with TSP and KP and show that TTP is NP-Hard. For

this, we show how TSP and KP could be reduced to TTP. Note that there are many ways to get the reductions, but we just show one
example for each case.

Lemma 3 (TSP Reduction). Solving a TSP is equivalent to solving a TTP when for the speed function, smax = smin and the
knapsack weight capacity W ≥

∑i=m
i=1 wi, i.e. the knapsack is sufficiently large to hold all items.

Proof. With smax = smin, the travelling speed becomes constant. With W ≥
∑i=m

i=1 wi, all items must be collected for the
maximum profit. So the collection plan p has no impact on the cyclic tour t.

Lemma 4 (KP Reduction). Solving a KP is equivalent to solving a TTP when distance d(c, c′) is the same for any two cities c ̸= c′

and for the speed function, smax = smin resulting into a constant speed.

Proof. When the distance d(c, c′) is the same for any two cities c ̸= c′, and the speed is always a constant during the tour, the total
travelling time is always the same. So the cyclic tour t has no impact on the collection plan p.

As per Lemmas 3 and 4, TSP and KP are both special cases of TTP. So we have the following lemma, which is also mentioned
in [26].

Lemma 5 (TTP Complexity). TTP is NP-Hard since TSP and KP are NP-Hard.

We define TSP and KP components of a TTP when respectively the KP and the TSP components are left unchanged.

Definition 7 (TSPC). Given a TTP and a particular collection plan p, find a cyclic tour t so that the TTP objective is maximised.
This is the TSP component of TTP or in short TSPC.

Definition 8 (KPC). Given a TTP and a particular cyclic tour t, find a collection plan p so that the TTP objective is maximised.
This is the KP component of TTP or in short KPC.

We also show that solving the TSP or KP component of a TTP is not equivalent to solving a standalone TSP or KP respectively.

Lemma 6 (TSPC). TSPC is NP-Hard and is not equivalent to TSP.

Proof. For the first part: TSP easily reduces to TSPC with a constant speed function having smax = smin. For the second part:
assume the speed depends on the knapsack weight. Although the collection plan is unchanged, reordering cities may also change
the item collection order. This implies the travelling speed and the travelling time even between the same pair of cities might
change. This means the collection plan could still affect exploration of cyclic tours in TSPC.

The lemma below is provided in [35].

Lemma 7 (KPC). KPC is NP-Hard and is not equivalent to KP.

1

2

3

4

5

1
⟨4
,2
0
⟩

2⟨2, 8⟩

3⟨
4,
20
⟩

4⟨1, 4⟩

1

2
3

4
1

2.5

4.5

4.5

1.8

3

Knapsack Capacity W = 6

Knapsack Renting Rate R = 1

Maximum Speed smax = 1

Minimum Speed smin = 0.1

Cyclic Tour t = ⟨1, 2, 3, 4, 5, 1⟩
Collection plan p = ⟨0, 0, 1, 1⟩ ≡ {3, 4}
For tour segment ⟨1, 2, 3, 4⟩, s = smax = 1

For tour segment ⟨4, 5⟩, s = 1− 4×0.9
6

= 0.4

For tour segment ⟨5, 1⟩, s = 1− 5×0.9
6

= 0.25

Total Time T (t, p) = 1+2+3
1

+ 4
0.4

+ 1
0.25

= 20

Total Rent R(t, p) = 20×R = 20

Total Weight W (p) = 4 + 1 = 5

Total Profit P (p) = 20 + 4 = 24

Net Profit N(t, p) = 24− 20 = 4

Figure 1: Left: a TTP instance having 5 cities (circles) and 4 items (rectangles) and a TTP solution with the travelled cyclic path
(solid lines) and collected items (solid rectangles). Eacy city has a city index. City 1 (double circle) is the designated city to start
from and end to. Each item has an item index and a tuple for weight and profit. Lines have distances as labels. Dashed lines are
not in the travelled path and dotted rectangles are for items not collected. Right: other required parameters of the TTP instances
along with the calculation of the net profit for the TTP solution.

Above two lemmas show that just using standalone TSP and KP solvers to solve TSPC and KPC will not work. The reason is
still the mutual interdependence of TSPC and KPC within TTP.

We adapt 2OPT and BitFlip operators to TSPC and KPC respectively.

Lemma 8 (2OPT for TSPC). Given a TTP solution ⟨t, p⟩ with wt,p(k) and τt,p(k) for all positions, a 2OPT(t, b, e) operator
produces a new cyclic tour t′ for which computing N(t′, p) needs O(e− b) time.

Proof. Given wt,p(k) and τt,p(k) for all positions in t, for each position k ∈ [b, e + 1] in t′ first we have to compute the
knapsack weight wt′,p(k), the travelling speed st′,p(k − 1), and the travelling time up to each position τt′,p(k). Then, the
new total travelling time and the new objective values are computed as T (t′, p) = T (t, p) + τt′,p(e + 1) − τt,p(e + 1) and
N(t′, p) = P (p)−R× T (t′, p), respectively.

Lemma 9 (BitFlip for KPC). Given a TTP solution ⟨t, p⟩ with wt,p(k) and τt,p(k) for all positions, BitFlip(p, i) produces a new
collection plan p′ for which computing N(t, p′) needs O(n− t(li)) time.

Proof. In addition to computing P (p′) in O(1) time, for all positions k ∈ [t(li), n− 1] in t, we have to compute the knapsack
weight wt,p′(k), the travelling speed st,p′(k), and the travelling time up to each position τt,p′(k+1). Then, the new total travelling
time and the new objective values are computed as T (t, p′) = τt,p′(n) and N(t, p′) = P (p′)−R× T (t, p′), respectively.

3 Related Work
TTP was introduced in [5] and later many benchmark instances were given in [34]. Depending on whether cities and items are
dynamically made available for visiting or collection, TTP is of two types: dynamic and static. For dynamic TTP, we refer to a
recent article in [38]. In this paper, we mainly deal with static TTP solving: all cities must be visited and all items are available all
the time. The thief decides whether particular cities are to be visited first or particular items are to be collected. Existing TTP
solvers can be grouped into 5 main categories: (i) constructive methods, (ii) fixed-tour methods, (iii) cooperative methods, (iv) full
encoding methods, and (v) hyper-heuristic methods. We give an overview of each category below. For further details, we also refer
the reader to a recent review article [43].

3.1 Constructive Methods
In constructive methods, an initial cyclic tour is generated (TSP) using the Chained Lin-Kernighan heuristic [2]. The cyclic tour is
then kept unchanged while collection plans are generated (KPC) using item scores based on their weight, profit, and position in the
cyclic tour. This category includes greedy approaches such as Simple Heuristic [34], Density-Based Heuristic [6], Insertion [26]
and PackIterative [17]. These approaches have been used in restart-based algorithms such as S5 [17] and in the initialisation phase
of other methods.

3.2 Fixed-Tour Methods
In fixed-tour methods, after generating an initial cyclic tour (TSP) using constructive methods, an exact or an approximate method
is used to find a collection plan (KPC). Exact methods [44, 35] using dynamic programming or mixed integer programming
approaches can find the best collection plan for every given cyclic tour. However, these methods can not solve large instances in a
reasonable time. Approximate methods [34, 17, 23] iteratively improve the collection plan by using the BitFlip operator on one or
more items in each iteration. Approximate methods can solve large instances in a reasonable time although they do not guarantee
to find the best collection plan for a given cyclic tour.

3.3 Cooperative Methods
Cooperative methods are iterative approaches based on the cooperational coevolution approach [36]. After generating an initial
TTP solution using a constructive or a fixed-tour method, the cyclic tours and the collection plans are explored by two separate
search modules for TSPC and KPC. These two search modules are executed by a meta-optimiser in an interleaving fashion so
that their interdependent nature is somewhat considered [43]. Some well-known cooperative methods are Cooperative Solver
(CoSolver) [6], CoSolver with 2OPT and Simulated Annealing (CS2SA) [13], CS2SA with offline instance-based parameter tuning
(CS2SA*) [15] and CoSolver with reverse order item selection (RWS) [46]. Moreover, a surrogate assisted cooperative solver
[31] approximates the final TTP objective value for any given initial TSP tour without finding the final solution; based on the
approximation, non-promising initial solutions are discarded and thus more solutions are considered within a given time budget.

3.4 Full-Encoding Methods
Full-encoding methods consider the problem as a whole. Well-known full-encoding methods include a Memetic Algorithm with
Two-stage Local Search (MATLS) [26], a Memetic algorithm with Edge-Assembly and 2-Points crossover operators (MEA2P) [45],
a swarm intelligence algorithm [42] based on max-min ant system [39], a memetic Algorithm with 2OPT and BitFlip search [13],
another memetic algorithm with joint 2OPT and BitFlip [14] such that BitFlip is used on just one item each time a 2OPT operator
is used on cyclic tours, and an evolutionary algorithm using typical TSP and KP operators but maintaining quality solutions over
epochs [33].

Overall full-encoding methods do not perform well beyond a few hundred cities and a few thousand items due to search space
explosion.

3.5 Hyper-Heuristic Methods
In hyper-heuristic based methods, genetic programming (GP) is usually used to generate or select low level heuristics for cyclic
tour or collection plan exploration. One GP method [25] generates two packing heuristics for collection plans. An individual in
each generation is a tree with internal nodes being simple arithmetic operators and leaf nodes are numerical parameters of a given
TTP. Other GP methods [24, 16] learn how to select a sequence of low level heuristics for TSPC or KPC. Another GP method [24]
uses Baysian networks with low level heuristics as networks of individuals in each generation. Yet another GP method [16] has
trees as individuals in each generation with internal nodes as functions and low level heuristics as leaf nodes. A recent random and
reward based hyperheuristic method [1] uses 23 operators and 4 ways to choose from 23 operators but evaluates the method only
on 9 problem instances. Overall hyper-heuristic methods do not perform well beyond a few hundred cities and a few thousand
items since the search space becomes very large.

4 TTP Search Framework
As we see from the TTP literature, existing TTP methods have very little to no explicit coordination between selection decisions
made for cyclic tours and collection plans. In this paper, we propose coordination based methods for TTP. Our proposed approaches
for TSPC select moves that explore cyclic tours and collection plans in a coordinated fashion and explicitly based on their potential
mutual effects. Also, our proposed approach for KPC selects marginally profitable items to explore collection plans with respect to
the cyclic tour selected earlier. We embed our coordination based approaches within 2OPT and along with BitFlip operators to be
used in exploring cyclic tours and collection plans. Our proposed coordination based approaches thus improve the effectiveness of
the search for TTP solutions.

Note that our proposed approaches could also be viewed as cooperative approaches since our algorithm also does move between
cyclic tour exploration and collection plan exploration in an interleaving fashion. Moreover, our proposed approaches for TSPC
are also like full-encoding methods since they make changes to both cyclic tours and collection plans at the same time.

Algorithms 1 and 2 describe the TTP search framework that we use in evaluating our proposed coordination based approaches.
The search framework is similar to the cooperational coevolution approach [36, 15]. It has three main functions: TTPS, TSPS, and
KPS. The framework allows customisation of its various parts to facilitate development of TTP search methods with or without
coordination.

Below we list the abbreviations used in the proposed search framework.

TTPS The main TTP search function in Algorithm 1
TSPS The TSP component search function in Algorithm 2
KPS The KP component search function in Algorithm 2

NOCH No coordination heuristic in Section 4.4
SGCH Search guided coordination heuristic in Section 5.2
PGCH Profit guided coordination heuristic in Section 5.4
CISH Coordinated item selection heuristic in Section 5.5

IPR Item profitability ratio defined in Section 5.3
LCIPR The lowest collected item profitability ratio defined in Section 5.3
HUIPR The highest uncollected item profitability ratio defined in Section 5.3

SBFS Standard bit-flip search in Section 4.4
MBFS Marginal bit-flip search in Section 5.5
NLBC Non-linear binary classifer in Section 5.6
LGCH Learning guided coordination heuristic in Section 5.6

4.1 Function TTPS
Function TTPS in Algorithm 1 has two loops, one inside another. The outer loop runs for a given timeout limit. Each iteration
of the outer loop is a restarting of the search from scratch. Inside the outer loop, first an initial cyclic tour t and an initial
collection plan p for t are generated. Function ChainedLinKernTour generates the initial cyclic tour using Chained Lin-Kernighan
heuristic [2]. Then, Function InitCollectionPlan generates the initial collection plan taking the best of the solutions returned by
PackIterative [17] and Insertion [26] methods. Once a complete TTP solution ⟨t, p⟩ is thus obtained, the inner loop then refines
that solution in an iterative fashion. In each iteration of the inner loop, Functions TSPS and KPS are invoked in an interleaving
fashion to improve the cyclic tour and the collection plan. The inner loop terminates when the objective value does not change
between two successive iterations.

4.2 Function TSPS
Function TSPS in Algorithm 2 is a steepest ascent hill-climbing method. Inside the main loop, from the current solution ⟨t, p⟩, a
new solution ⟨t′, p′⟩ is generated using the neighbourhood operator 2OPT and the coordination function CoordHeu for each tour
segment t[b, e], where b ∈ [1, n− 2] and te is in the precomputed Delaunay triangulation [11] neighbourhood DelaTriNeighb array
of tb. The best solution among the newly generated solutions that are better than the current solution is accepted as the current
solution for the next iteration of the main loop. Note that the main loop of each invocation of the function continues as long as the
improvement in the objective value is at least α% with respect to the objective value computed at the starting of the loop [12]. Here,
α essentially controls when to switch from the TSP component to the KP component. After initial experiments, we set α = 0.01.

Notice that in Function TSPS, after calling the operator 2OPT, there is a calling of the coordination function CoordHeu. We
know Operator 2OPT makes changes only to the cyclic tour. When no change in the collection plan is sought after Function 2OPT,
Function CoordHeu is defined to be returning just p as p′. However, in this paper, considering coordination between TSP and KP
components, we design alternative coordination functions to be used as Function CoordHeu. We later describe the alternative
functions.

Algorithm 1 Main Function in the Proposed TTP Search Framework
function TTPS(C, I, d,W,R, s, smax, smin)

parameters:
C: a set of n cities
I: a set of m items
d(c, c′): distance between cities c ̸= c′

W : knapsack weight capacity
R: knapsack renting rate
s(w): speed function for weight w
smax: maximum speed
smin: minimum speed

returns: ⟨t, p⟩: cyclic tour, collection plan

⟨t∗, p∗⟩ ← ∅ ▷ best solution
while not timeout do ▷ restart in each lap

t← ChainedLinKernTour()
p← InitCollectionPlan(t)
while not timeout do

NBS ← N(t, p) ▷ before search, in first iteration
NBS ← NKP ▷ before search, in next iterations
NBS ← N(t, p) ▷ before search
⟨t, p⟩ ← TSPS(t, p)
NTSP ← N(t, p) ▷ after TSP search
p← KPS(t, p, 1, n− 1)

NKP ← N(t, p) ▷ after KP search
if NBS = NKP then

break
if N(t, p) > N(t∗, p∗) then
⟨t∗, p∗⟩ ← ⟨t, p⟩ ▷ new best solution

return ⟨t∗, p∗⟩

Algorithm 2 Other Functions in the Proposed TTP Search Framework
function TSPS(t, p)
⟨t⋄, p⋄⟩ ← ⟨t, p⟩ ▷ best solution
repeat ▷ main loop

N ′ ← N(t, p)

for b← 1 to n− 2 do
for each te ∈ DelaTriNeighb[tb] do

if b < e < n then
t′ ← 2OPT(t, b, e)
p′ ←CoordHeu(t, p, t′, b, e)
if N(t′, p′) > N(t⋄, p⋄) then
⟨t⋄, p⋄⟩ ← ⟨t′, p′⟩

⟨t, p⟩ ← ⟨t⋄, p⋄⟩
until N(t, p) < N ′ · (1 + α) ▷ α = 0.01%

return ⟨t, p⟩

function KPS(t, p, b, e)
I ′ ← SelectItemsSubset(t, p, b, e)
MarkAllItemsUnchecked(I ′)
while ¬AllItemsChecked(I ′) do

i← RandomUncheckedItem(I ′)
MarkItemChecked(i)
p′ ← BitFlip(p, i) when K(p′)

if N(t, p′) > N(t, p) then
p← p′

I ′ ← SelectItemsSubset(t, p, b, e)
MarkAllItemsUnchecked(I ′)

return p

4.3 Function KPS
Function KPS in Algorithm 2 starts with an initial subset I ′ of items selected by Function SelectItemsSubset based on a given tour
segment t[b, e] in a solution ⟨t, p⟩. The loop in Function KPS runs until for all of the items in I ′, BitFlip has been applied without
any improvement in the objective, since the latest change in the collection plan. In each iteration of the loop, one previously
unchecked item i from I ′ is randomly checked and pi is flipped using BitFlip(p, i). The change in pi is accepted if it improves the
objective. Note that every time a change in p is thus accepted, I ′ is computed again by Function SelectItemsSubset and all items in
the new I ′ are marked unchecked. This in essence restarts the KP search within the same loop. Functions MarkAllItemsUnchecked,
AllItemsChecked, RandomUncheckedItem, MarkItemChecked are respectively for marking all items in I ′ unchecked, testing
whether all items in I ′ are checked already, selecting an unchecked item i from I ′ randomly, and marking a selected item i as
checked.

For Function SelectItemsSubset, we could typically use all items in the given tour segment t[b, e], or just some of them.
Considering coordination between the TSP and the KP component, in this paper, we later propose strategies to select a subset of
items from a tour segment.

4.4 Baseline Solver Version
Our baseline TTP solver has no explicit coordination between TSP and KP components. As shown in Algorithm 3, for
Function CoordHeu, we use Function NoCoordHeu(t, p, t′, b, e) that just returns p making no change at all, and for Function
SelectItemsSubset(t, p, b, e), we use Function SelectTourSegmentItems(t, p, b, e) that just returns I(t[b, e]), i.e. the set of
all items available in the tour segment t[b, e]. For convenience, in discussing the experimental results, we denote the approach
using Function NoCoordHeu by NOCH. Note that Function TSPS with Function NoCoordHeu is almost the same as the method
used for solving the TSP component in [15]. Also, note that Function KPS with SelectTourSegmentItems is called the standard
bit-flip search (SBFS) [34, 17] algorithm for solving the KP component in TTP.

Algorithm 3 Implementing Baseline Solver on the Search Framework
function NoCoordHeu(t, p, t′, b, e)

▷ defines CoordHeu(t, p, t′, b, e)
return ps

function SelectTourSegmentItems(t, p, b, e)
▷ defines SelectItemsSubset(t, p, b, e)
return I(t[b, e])

5 Proposed Coordination Approaches
We give a motivating example to show how coordination helps evaluate a cyclic tour better in TTP. We also characterise
Operator 2OPT to find the reasons behind its poor coordination behaviour. We develop our coordination based heuristics for TTP
on top of the search framework in Algorithms 1 and 2. We develop three alternative approaches to be used within Function TSPS
and one alternative approach to be used within Function KPS. The three coordination approaches to be used to define Function
CoordHeu within Function TSPS are local search based, human designed intuitive, and machine learning models. The other
coordination approach to be used within Function KPS is a strategy to select items by Function SelectItemsSubset.

5.1 Observing Coordination Effect after 2OPT
In Function TTPS in Algorithm 1, Function TSPS and Function KPS are invoked in an interleaving fashion. In the baseline
algorithm in Section 4.4, after Operator 2OPT is called in Function TSPS, Function NoCoordHeu is used for Function CoordHeu.
This means no change in collection plan is made after changing the cyclic tour. The example below shows such an approach results
in incorrect or misleading evaluations of the TTP solutions by Function TSPS.

Consider the TTP example in Figure 1 and the solution comprising cyclic tour t = ⟨1, 2, 3, 4, 5, 1⟩ and collection plan
p = ⟨0, 0, 1, 1⟩ having the objective value N(t, p) = 4. When Operator 2OPT(t, 1, 3) is applied on the cyclic tour t to reverse the
tour segment ⟨2, 3, 4⟩ to ⟨4, 3, 2⟩, the resultant cyclic tour is t′ = ⟨1, 4, 3, 2, 5, 1⟩. Figure 2 (left) shows that if the collection plan p

is not changed when t changes to t′, the objective value N(t′, p) = −1.5 is used to evaluate t′. In this case, there is no explicit
coordination between the cyclic tour and the collection plan. Then, Figure 2 (right) shows that if the collection plan p is also
changed to p′ = ⟨1, 0, 0, 1⟩ after t is changed to t′, the objective value N(t′, p′) = 6 is used to evaluate t′. There is coordination
here between the cyclic tour and the collection plan. This example clearly shows that the potential of a cyclic tour is better reflected
when the collection plan is also adjusted with the cyclic tour and so coordination is needed. To have a clearer perspective, with
N(t′, p) = −1.5, the resultant tour t′ could be easily rejected during search while with N(t′, p′) = 6, the same resultant tour t′

could be easily accepted. With an interleaving approach of invoking Functions TSPS and KPS, existing TTP methods thus do not
properly evaluate generated TTP solutions and thus suffer from not having a proper search direction. In this paper, we argue that

1

2

3

4

5

1
⟨4
,2

0
⟩

2⟨2, 8⟩

3
⟨4
,2

0
⟩

4⟨1, 4⟩

1

2
3

4
1

2.5

4.5

4.5

1.8

3

1

2

3

4

5

1
⟨4
,2

0
⟩

2⟨2, 8⟩

3
⟨4
,2

0
⟩

4⟨1, 4⟩

1

2
3

4
1

2.5

4.5

4.5

1.8

3

Without Coordination

t′ = ⟨1, 4, 3, 2, 5, 1⟩, p = ⟨0, 0, 1, 1⟩ = {3, 4}
For tour segment ⟨1, 4⟩, s = smax = 1

For tour seg ⟨4, 3, 2, 5⟩, s = 1− 4×0.9
6

= 0.4

For tour seg ⟨5, 1⟩, s = 1− 5×0.9
6

= 0.25

T (t′, p) = 4.5
1

+ 3+2+1.8
0.4

+ 1
0.25

= 25.5

N(t′, p) = 24− 25.5 = −1.5

With Coordination

t′ = ⟨1, 4, 3, 2, 5, 1⟩, p′ = ⟨1, 0, 0, 1⟩ = {1, 4}
For tour segment ⟨1, 4, 3, 2⟩, s = smax = 1

For tour segment ⟨2, 5⟩, s = 1− 4×0.9
6

= 0.4

For tour segment ⟨5, 1⟩, s = 1− 5×0.9
6

= 0.25

T (t′, p′) = 4.5+3+2
1

+ 1.8
0.4

+ 1
0.25

= 18

N(t′, p′) = 24− 18 = 6

Figure 2: From the scenario in Figure 1 with t = ⟨1, 2, 3, 4, 5, 1⟩, p = ⟨0, 0, 1, 1⟩, and N(t, p) = 4, (left) only 2OPT is applied on
t to get t′ = ⟨1, 4, 3, 2, 5, 1⟩ and (right) after 2OPT is applied, p is also changed to p′ = ⟨1, 0, 0, 1⟩.

Algorithm 4 Implementing SGCH on the Search Framework
function SearchGuidedCoordHeu(t, p, t′, b, e)

▷ defines CoordHeu(t, p, t′, b, e)
return KPS(t′, p, b, e)

function SelectTourSegmentItems(t, p, b, e)
▷ defines SelectItemsSubset(t, p, b, e)
return I(t[b, e])

for better coordination between two TTP components, the quality of each cyclic tour or the collection plan should be evaluated
along with the best possible corresponding collection plan or the cyclic tour and not against only the current collection plan or
cyclic tour. Our arguments above are equally applicable to both TTP components. However, in this paper, we mainly evaluate
cyclic tours against the best possible collection plans. This is because the 2OPT operator used in Function TSPS can make changes
to many cities in large tour segments while BitFlip operator used in Function KPS makes changes to only one item in the collection
plan, and we put more emphasis on the large changes. For an operator making huge change in Function KPS, one could also
evaluate collection plans against the best possible cyclic tours.

Below we define the quality of a cyclic tour and prove its time complexity.

Definition 9 (Cyclic Tour Quality). The quality Q(t) = maxp N(t, p) of a cyclic tour t in TTP is the maximum objective value
N(t, p) over all possible collection plans p.

Lemma 10 (Cyclic Tour Quality). Computing quality Q(t) for a cyclic tour t in TTP is NP-Hard.

Proof. Computing Q(t) is essentially solving KPC and so is NP-Hard as per Lemma 7.

From the above lemma, it is clear that invoking a complete search for collection plans for each and every tour segment reversal
for a given cyclic tour is not feasible within a given timeout limit. So we need an incomplete search or a heuristic.

5.2 Local Search Based Coordination
Since computing Q(t) for t is very hard, as shown above, we want to obtain an estimate of Q(t) for a given t. For this, in this paper,
we propose to invoke a local search based incomplete approach. We name our proposed approach as Search Guided Coordination
Heuristic (SGCH) for TTP.

SGCH Implementation Algorithm 4 shows the implementation of our proposed SGCH approach on top of the search framework.
For Function SelectItemsSubset in Function KPS, we define Function SelectTourSegmentItems to be returning I(t[b, e]) and
for Function CoordHeu in Function TSPS, we define Function SearchGuidedCoordHeu to be returning the collection plan
produced by Function KPS by exploring items I(t′[b, e]). Notice that Function KPS is called twice for SGCH with the same
definition of Function SelectTourSegmentItems: once in Function TTPS for t[1, n − 1], i.e. for the entire tour, and again in
Function SearchGuidedCoordHeu called from Function TSPS for each reversed tour segment t′[b, e].

5.3 Characterising 2OPT Coordination Behaviour
We characterise the coordination behaviour of Operator 2OPT using item profitability ratio (IPR). Below we formally define IPR.

Definition 10 (Item Profitability Ratio). For an item i, the item profitability ratio (IPR) ri = πi/wi. An item i is more profitable
than item i′, if ri > ri′ , or if πi > πi′ when ri = ri′ .

Greedy constructive KP heuristics typically collect items in non-increasing order of IPR. Constructive TTP heuristics also
exhibit similar trends. To describe these trends, we need two functions. For a given sequence of numbers and a given position, one
of the functions return the smallest number from the beginning up to the given position while the other returns the largest number
from the ending down to the given position.

Definition 11 (Prefix Minimum). Given a sequence s = ⟨s1, s2, . . . , sn⟩ of n numbers sk with k ∈ [1, n], the prefix minimum
function Π is defined by Π(s, k) = min(Π(s, k − 1), sk) when 1 < k ≤ n and Π(s, 1) = s1. Using the definition, we also get the
prefix minimum sequence s′ = Π(s) = ⟨Π(s, 1),Π(s, 2), . . . ,Π(s, n)⟩ for a given sequence s in O(n) time. For example, the
prefix minimum sequence s′ is Π(s) = ⟨9, 6, 6, 4, 4, 4⟩ when the given sequence s is ⟨9, 6, 8, 4, 5, 7⟩.

Definition 12 (Suffix Maximum). Given a sequence s = ⟨s1, s2, . . . , sn⟩ of n numbers sk with k ∈ [1, n], the suffix maximum
function Ω is defined by Ω(s, k) = max(sk,Ω(s, k + 1)) when 1 ≤ k < n and Ω(s, n) = sn. Using the definition, we also get
the suffix maximum sequence s′′ = Ω(s) = ⟨Ω(s, 1),Ω(s, 2), . . . ,Ω(s, n)⟩ for a given sequence s in O(n) time. For example,
the suffix maximum sequence s′′ is Ω(s) = ⟨9, 8, 8, 7, 7, 7⟩ when the given sequence s is ⟨9, 6, 8, 4, 5, 7⟩.

IPR Trends in TTP As is already mentioned above, constructive KP heuristics exhibit a non-increasing trend in IPR. In TTP,
items are scattered over cities and item collection order is restricted by city visiting order in the cyclic tour. Therefore, constructive
greedy TTP methods such as PackIterative [17] and Insertion [26] use IPRs along with distances of the respective cities from the
end of the cyclic tour in constructing the collection plan. So a monotonous non-increasing trend in IPRs of collected items is
not expected in TTP solutions. However, given a cyclic tour, within each city, we can reasonably expect items are collected in
non-increasing order of IPR, unless there is not enough space for a highly profitable but heavy item. This could be a key guideline
to get collection plans in TTP. Below we define the lowest collected IPR (LCIPR) and the highest uncollected IPR (HUIPR) for
each city in a TTP solution.

Definition 13 (Lowest Collected IPR). Given a TTP solution ⟨t, p⟩, for a city tk at position k in the cyclic tour t, the lowest
collected IPR is L(t, p, k) = mini∈I(tk)∧pi=1 ri. We then define a series of LCIPRs as L(t, p) = ⟨L1, L2, . . . , Ln−1⟩ where
Lk = L(t, p, k). Using Definition 11, we further define a prefix minimum function Π(L(t, p), k) and a prefix minimum sequence
Π(L(t, p)).

Definition 14 (Highest Uncollected IPR). Given a TTP solution ⟨t, p⟩, for a city tk at position k in the cyclic tour t, the highest
uncollected IPR is H(t, p, k) = maxi∈I(tk)∧pi=0 ri. We then define a series of HUIPRs as H(t, p) = ⟨H1, H2, . . . ,Hn−1⟩ where
Hk = H(t, p, k). Using Definition 12, we further define a suffix maximum function Ω(H(t, p), k) and a suffix maximum sequence
Ω(H(t, p)).

LCIPR and HUIPR Trends in TTP Figure 3 (left) shows the LCIPR sequence L(t, p) and the HUIPR sequence H(t, p) for a
TTP solution returned by PackIterative [17] for a benchmark instance eil76_n750_uncorr_10.ttp. Clearly, L(t, p) and H(t, p) do
not exhibit any monotonous trends. However, L(t, p) does exhibit an overall decreasing trend from city positions low to high
and H(t, p) does exhibit an overall increasing trend from city positions high to low. Notice that the prefix minimum sequence
Π(L(t, p)) and the suffix maximum sequence Ω(H(t, p)) in effect capture the two overall trends respectively. Moreover, both of
these two trend lines are monotonous, although one is in the forward direction and the other is in the backward direction.

Disruptions in Trends by 2OPT On the TTP solution ⟨t, p⟩ shown in Figure 3 (left), if we apply operator 2OPT(t, 39, 74) to
reverse the cities in the tour segment between positions 39 and 74 keeping the collection plan p unchanged, we get a new solution
⟨t′, p⟩ that is shown in Figure 3 (right). Notice that the 2OPT operator affects the prefix minimum sequence Π(L(t′, p)) and
the suffix maximum sequence Ω(H(t′, p)) in the reversed tour segment t′ for 39 ≤ k ≤ 74. Further notice that the objective
value 72151.46 of the resultant solution ⟨t′, p⟩ is smaller than the objective value 77544.88 of the solution ⟨t, p⟩. This means the
resultant solutions in such cases would be mostly rejected by the search algorithm. The degradation of the objective value by the
2OPT operator is because in the resultant tour, less profitable items are collected in the cities furthest from the end of the tour
causing more travelling time. As shown before in Figure 3 (left), this was not the case in the solution before application of the
2OPT operator. So this is somewhat clear that the 2OPT operator results in deviation from the typical trends of Π(L(t, p)) and
Ω(H(t, p)) in TTP.

5.4 Human Designed Intuitive Coordination
Although the local search based approach mentioned before is a way to obtain an estimate of quality Q(t′) for a generated cyclic
tour t′, invoking the local search method for each generated cyclic tour t′ would be costlier. In this paper, we design a heuristic
approach to obtain a modified collection plan p′ that is used to get the estimated quality value for the generated cyclic tour t′. We

Lowest Collected IPR

Highest Uncollected IPR

Before 2OPT

Max Higest Uncollected IPR

Prefix Min Lowest Collected IPR

Suffix

Lowest Collected IPR

Highest Uncollected IPR

After 2OPT
Prefix Min Lowest Collected IPR

 Max Higest Uncollected IPRSuffix

Figure 3: City position in a tour (x-axis) vs IPR (y-axis) for (left) a TTP solution with objective value 77544.88 as obtained by
the PackIterative method for a benchmark instance eil76_n750_uncorr_10.ttp and for (right) the solution with objective value
72151.46 as obtained after the application of operator 2OPT on the PackIterative generated solution for the same TTP instance on
the cities between positions 39 and 74, keeping the collection plan unchanged meaning considering no coordination.

name our proposed approach as Profit Guided Coordination Heuristic (PGCH) for TTP. The proposed approach aims to fix the
disruptions in the trends in the resulting collection plan produced by Operator 2OPT.

Fixing Trends after 2OPT using PGCH After applying 2OPT as shown in Figure 3 (right), we fix the deviations of trends in
the resultant Π(L(t′, p)) and Ω(H(t′, p)) by using Π(L(t, p)) and Ω(H(t, p)) from Figure 3 (left) as references. As per PGCH, at
any city position k in the reversed tour segment, a collected item i having IPR ri below Π(L(t, p), k) should be unpicked. Such
less profitable collected items are shown as green shaded regions in Figure 4 (Top-Left) and the result of unpicking such less
profitable items and so a changed collection plan p̄ are shown in Figure 4 (Top-Right). Further, as per PGCH, at any city at
position k in the reversed tour segment, an uncollected item i having IPR ri above Ω(H(t, p), k) should be picked. Such more
profitable uncollected items in the changed collection plan p̄ in Figure 4 (Top-Right) are shown as blue shaded regions in Figure 4
(Bottom-Left) and the result of picking such more profitable items and so a further changed collection plan p′ are shown in Figure 4
(Bottom-Right). Nevertheless, Figure 4 (Top-Right) and (Bottom-Right) altogether show that such unpicking and picking of the
items in the shaded regions would fix the trends of Π(L(t′, p)) and Ω(H(t′, p)) by changing the collection plan p to p̄ first and
then ultimately to p′ and thus having Π(L(t′, p′)) and Ω(H(t′, p′)). Figure 5 (left) and (right) respectively show the solutions
⟨t′, p⟩ and ⟨t′, p′⟩ with respective objective values 72151.46 and 78252.18 while the objective value for ⟨t, p⟩ is 77544.88. So the
solution ⟨t′, p′⟩ could be accepted by the search while ⟨t′, p⟩ could be rejected.

Overall Comments on PGCH While the above example shows PGCH helps improve the objective value, this is in general not
true. This is because, as mentioned earlier, finding the best collection plan p′ to compute the quality value Q(t′) of the generated
cyclic tour t′ is eventually an NP-Hard problem, whereas PGCH is just an approximation heuristic. In fact, PGCH might result into
a decrease in the objective value when (i) distances between cities, not just positions as in PGCH, also affect the objective value, (ii)
all low profitable items in earlier positions might not necessarily be unpicked, (iii) not enough high profitable items are available
in the later positions in the reversed tour segment, or they may not have been picked by PGCH. Regardless of underestimation
or overestimation of the objective value, the above positive example is just to make a point that PGCH after 2OPT helps better
evaluate the potential of a changed cyclic tour t′ than what just 2OPT alone does.

PGCH Implementation Algorithm 5 shows the implementation of our PGCH approach. In the first loop, collected items that
have IPR below Π(L(t, p, k)) are unpicked and in the second loop, uncollected items that have IPR above Ω(H(t, p, k)) are picked.

Lowest Collected IPR after 2OPT

Highest Uncollected IPR after 2OPT

Prefix Min LCIPR before 2OPT
After 2OPT

green shaded
items should
not be collected

Highest Uncollected IPR after Unpicking

Lowest Collected IPR after Unpicking

Prefix Min LCIPR before 2OPT

After Unpicking

green shaded
collected items
from previous
figure are
unpicked

Lowest Collected IPR after Unpicking

Highest Uncollected IPR after Unpicking

Suffix Max HCIPR before 2OPT
After Unpicking

blue shaded
items should
not be
uncollected

Highest Uncollected IPR after Picking

Lowest Collected IPR after Picking

Max HCIPR before 2OPT

After Picking

blue shaded
uncollected items
from previous
figure are picked

Suffix

Figure 4: City positions in a tour (x-axis) vs IPR (y-axis) when items in the solution shown in Figure 3 (right) are picked or
unpicked. Top-Left: green shaded regions denote collected items that should be unpicked. Top-Right: green shaded collected
items in the Top-Left figure are now unpicked. Bottom-Left: blue shaded regions denote uncollected items that should be picked.
Bottom-Right: blue shaded uncollected items in the Bottom-Left figure are picked.

Algorithm 5 Implementing PGCH on the Search Framework
function ProfitGuidedCoordHeu(t, p, t′, b, e)

▷ defines CoordHeu(t, p, t′, b, e)
p′ ← p

for b ≤ k ≤ e do ▷ unpick forward
for i ∈ I(t′k) do

if p′i = 1 ∧ ri < Π(L(t, p, k)) then
p′i ← 0

for e ≥ k ≥ b do ▷ pick backward
for i ∈ I(t′k) do

if p′i = 0 ∧ ri > Ω(H(t, p, k)) then
p′i ← 1 when K(p′) ▷ Knapsack constraint

return p′

Lemma 11 (PGCH). Given a TTP solution ⟨t′, p⟩ obtained after applying Operator 2OPT(t, b, e) on solution ⟨t, p⟩, Algorithm 5
computes p′ and so a new solution ⟨t′, p′⟩. Computing p′ and then N(t′, p′) takes O(n− b+ |I(t′[b, e])|) time in total.

Proof. For each application of Algorithm 5, the two loops run for O(|I(t′[b, e])|) times. Then, to compute N(t′, p′), as an
approximation of Q(t′), for each city from positions b to n− 1 in t′, we need to compute the knapsack weight and the travelling
speed, which needs O(n− b) time. Thus, PGCH and computation of N(t′, p′) takes O(n− b+ |I(t′[b, e])|) time in total.

Note PGCH implementation requires computation of Π(L(t, p)) and Ω(H(t, p)) for the current solution ⟨t, p⟩ in the beginning
of each iteration of the main loop in Function TSPS. Below we show the time complexity of this.

Lemma 12 (Trend Lines). Computing Π(L(t, p)) and Ω(H(t, p)) for any solution ⟨t, p⟩ requires O(n+m) time.

Proof. Based on definitions 11 and 12, computing these sequences for any solution ⟨t, p⟩ needs considering all items in O(m)

time and considering all cities in O(n) time. So, the total needed time is O(n+m).

5.5 Coordination Based Item Selection
In Function KPS when called from TTPS in Algorithm 1, Function SelectItemsSubset(t, p, b, e) is by default defined by Function
SelectTourSegmentItems that returns all items in I(t[1, n− 1]), i.e. all items in I , in an uncoordinated fashion. As mentioned
before, it is called the standard bit-flip search (SBFS). However, SBFS leads to an unguided exploration of the collection plans. In
this paper, we present a targeted form of bit-flip search and name it marginal bit-flip search (MBFS). MBFS restricts the items to
be explored using the cyclic tour in a coordinated fashion. We call our proposed approach for selection of the items to be explored
as Coordinated Item Selection Heuristic (CISH) and we define SelectItemsSubset(t, p, b, e) as such.

Before going into further details, let us define marginally collected and uncollected items in a given tour segment for a given
TTP solution. The marginally collected items have the lowest collected IPRs at the cities where the prefix minimum sequence
changes as we move from low positions to the high positions in the cyclic tour. Similarly, the marginally uncollected items have the
higest uncollected IPRs at the cities where the suffix maximum sequence changes as we move from high positions to low positions.

Lowest Collected IPR

Highest Uncollected IPR

Prefix Min Lowest Collected IPR
After 2OPT

Suffix Max Higest Uncollected IPR

Lowest Collected IPR

Highest Uncollected IPR

Prefix Min Lowest Collected IPR
After 2OPTCO

Suffix Max Highest Uncollected IPR

Figure 5: City positions in a tour (x-axis) vs IPR (y-axis) (left) when Operator 2OPT has just been applied to t keeping p

unchanged and (right) when p is changed using PGCH after applying Operator 2OPT. The Left figure is the same as Figure 3
(right) and the Right figure is the same as Figure 4 (Bottom-Right) but cities outside the reversed segment and the prefix minimum
of LCIPR are also shown. The objective 0value for the Left solution is 72151.46 and that for the Right solution is 78252.18 while
that for the solution in Figure 3 (left) before applying 2OPT is 77544.88.

Algorithm 6 Implementing CISH for using MBFS in Function KPS
function SelectMarginalItems(t, p, b, e)

▷ defines SelectItemsSubset(t, p, b, e)
Icollected ← { at most one marginally collected item

for each position k ∈ [b, e] }
Iuncollected ← { at most one marginally uncollected item

for each position k ∈ [b, e] }
Imarginal ← Icollected ∪ Iuncollected
return Imarginal

Definition 15 (Marginally Collected Item). Given a TTP solution ⟨t, p⟩ and a tour segment t[b, e], an item i ∈ I(t[b, e]) is a
marginally collected item if there exists k : i ∈ I(tk) such that ri = L(t, p, k) = Π(L(t, p), k) and there exists no k′ : b ≤ k′ < k

such that L(t, p, k′) = L(t, p, k).

Definition 16 (Marginally Uncollected Item). Given a TTP solution ⟨t, p⟩ and a tour segment t[b, e], an item i ∈ I(t[b, e])

is a marginally uncollected item if there exists k : i ∈ I(tk) such that ri = H(t, p, k) = Ω(H(t, p), k) and there exists no
k′ : k < k′ ≤ e such that H(t, p, k′) = H(t, p, k).

Our CISH approach, in case of using MBFS in Function KPS considers unpicking only marginally collected items and picking
only marginally uncollected items. Algorithm 6 shows Function SelectMarginalItems(t, p, b, e), that implements the CISH
approach. This function returns at most one arbitrarily selected marginally collected item and at most one arbitrarily selected
marginally uncollected item from each city in the tour segment t[b, e], even though multiple marginally collected items or multiple
marginally uncollected items could exist in a city.

We now analyse the time complexity of applying Operator BitFlip in case of using MBFS in Function KPS on a marginally
collected or uncollected item and subsequently update the prefix minimum and suffix maximum sequences.

Lemma 13. Applying the BitFlip operator on a marginally collected or uncollected item requires O(n+m) time to recompute
Π(L(t, p)) and Ω(H(t, p)) and thus update marginally collected and uncollected items.

Proof. The proof is obtained from Definitions 11, 12, 15, and 16.

Note that Function SelectMarginalItems could not be used when Function KPS(t′, p, b, e) is called from Function
SearchGuidedCoordHeu as part of SGCH implementation in Algorithm 4. The reason is after applying Operator 2OPT,
calling Function SelectMarginalItems do not find any marginally collected or uncollected items in I(t′[b, e]) since the prefix
minimum Π(L(t′, p)) and suffix maximum Ω(H(t′, p)) sequences, as shown in Figure 3 (right), do not exhibit any changes within
the reversed tour segment. As such, for SGCH, we could at best use Function SelectTourSegmentItems as is shown in Algorithm 4.

5.6 Machine Learning Based Coordination
As shown in Figure 3 (left), the prefix minimum and suffix maximum sequences roughly demarcate collected and uncollected
items creating non-linear demarcation lines. As such, from a number of generated example TTP solutions for the same given TTP
instance, a properly trained non-linear binary classifier (NLBC) could learn classification of an item as collected or uncollected
at a given position of its city in a given cyclic tour and the training could even be online and instance specific. After 2OPT in
Function TSPS in Algorithm 2, we then can use the trained NLBC to decide which item in the reversed segment is to be collected
and which one is not to be. This essentially replaces the local search based or human designed intuitive coordination with machine
learning based coordination. Nevertheless, we name this proposed approach as Learning Guided Coordination Heuristic (LGCH).

Given a typical timeout limit of 10 minutes to solve each problem instance, as is used as standard in evaluation of TTP methods,
it is difficult to perform online training of NLBC models within the timeout limit before using them during search for the rest of
the left-out time. We still perform instance specific online training within the timeout limit. However, after running preliminary
experiments, we keep the learning effort as low as practical and set required parameter values as deemed appropriate. Below we
describe the NLBC models, their training procedures, and their use during search.

Training and Validation Examples For a given problem instance, we generate
30

maxc |I(c)|
solutions to be used in training and

half of that number of solutions to be used in validation. The training and validation solutions are generated by using Chained
Lin-Kernighan heuristic [2] for cyclic tours followed by PackIterative [17] and Insertion [26] for collection plans for the cyclic
tours. Keeping the generated cyclic tours unchanged, only the generated collection plans are further improved by running our
proposed MBFS algorithm and the improved collection plans are actually used in training and validation of the neural network.
In this way, our learning model captures the characteristics of the initialisation and improvement of the collection plan by the

MBFS algorithm. Then, we use the learning model to define Function CoordHeu to be used within Function TSPS in Algorithm 2.
Nevertheless, the actual input to the NLBC models are the normalised item profitability ratio nipr(i) =

ri
maxi′ ri′

for an item i and

its normalised position np(i) =
t(li)

n
in a cyclic tour t of a TTP solution ⟨t, p⟩. On the other hand the actual output of the NLBC

models are pi denoting whether an item i is collected or not in the collection plan p of the same TTP solution ⟨t, p⟩. To be more
specific, input features nipr(i) and np(i) of each item i is fed to the NLBC model at a time and pi is predicted for the same item.
So the training examples comprise all items in all training solutions. However, each pair ⟨nipr(i), np(i)⟩ can appear in multiple
solutions. So we take only unique such pairs from the generated training solutions and use the collection state pi with the highest
frequency over all the corresponding solutions in training the NLBC models. Conceptually, an NLBC model would make an
overall prediction of whether an item should be collected or not when its city is in a certain position in a possible cyclic tour for the
given TTP instance.

Neural Networks as NLBCs We use neural networks to represent NLBCs. For just two inputs nipr(i) and np(i) and one output
pi for any given item i, we could think of simpler statistical models. We choose neural networks because the output for a given i

not only does explicitly depend on just nipr(i) and np(i) but also implicitly depends on the inputs features for the other i values.
In our view, the neural networks through their weights are a promising means to accumulate the implicit dependencies over i
values and generalise over problem instances. As for using more input features, we have tried to incorporate distance, but in our
preliminary experiments, the city positions appeared to be more promising than the distances of the cities from City 1 in the
forward or backward direction. Having discussed this, we acknowledge that further experiments with various machine learning
techniques and input features are necessary to make any more meaningful conclusion in this regard. We further emphasise that our
main focus in developing LGCH is to show that a machine learning approach could effectively capture the characteristics of our
human designed coordination heuristics. Of course better performing machine learning approaches could be developed and we
consider that to be out of scope of the paper.

Neural Network Architecture and Training Figure 6 shows the architecture of the neural network. It has three layers: one
input layer, one hidden layer and one output layer. The first two layers have lnm neurons each, where m is the number of items.
The last layer has only one neuron. We use the rectified linear unit (ReLU) as the activation function in the neurons in the first two
layers and the sigmoid activation function in the neuron in the last layer. We use the feed forward neural network architecture
in the mlpack C++ library [10] with its default optimiser [9]. We train the same neural network architecture 10 times to get 10
separately trained models for each TTP instance. We then take the best trained model in terms of the number of the correctly
classified pairs of ⟨nipr(i), np(i)⟩ for the validation examples. Henceforth, we refer to the best trained neural network as the neural
network N and use N (nipr(i), np(i)) = pi to denote its prediction pi made for the pair ⟨nipr(i), np(i)⟩.

LGCH Implementation Using Neural Network Predictions For Function CoordHeu in Function TSPS in Algorithm 2, we
define Function LearningGuidedCoordHeu(t, p, t′, b, e) to be returning p′ where p′i = N (nipr(i), np(i)) for i ∈ I(t′[b, e]) and
p′i = pi for i ̸∈ I(t′[b, e]). Note that because of the knapsack constraint, the precise implementation, as shown in Algorithm 7,
needs unpicking of all items followed by picking of the items predicted to be collected in the reversed tour segment.

Reusing Neural Network Predictions Since for an item, the neural network N only needs nipr(i) and np(i), we can actually
make predictions for all items and all positions beforehand and store them. This would certainly save the time required to
recompute the predictions for the same items and the same positions over and over again. In fact, our preliminary experiment
shows that recomputation of the predictions becomes costlier since each call of N is arguably compute intensive. However, a
straightforward approach to store all predictions for all items for all positions require O(nm) memory and more importantly needs
O(nm) calls of the costlier computation of N . In this paper, we propose an alternative strategy to store only one profitability ratio

nipr(i)

np(i) ...
...

pi

Figure 6: The neural network architecture used in representing NLBCs in our proposed LGCH. The architecture has 3 layers with

two input features nipr(i) =
ri

maxi′ ri′
and np(i) =

t(li)

n
and one output pi. The first two layers have ln(m) neurons, where m is

the number of items.

Algorithm 7 Implementing LGCH on the Search Framework
function LearningGuidedCoordHeu(t, p, t′, b, e)

▷ defines CoordHeu(t, p, t′, b, e)
p′ ← p

for i ∈ I(t′[b, e]) do ▷ any order
if p′i = 1 then

p′i ← 0

for i ∈ I(t′[b, e]) do ▷ any order
NIPR← ri

maxi′(r′i)

NP← t′(li)

n
if N (NIPR,NP) = 1 then

p′i ← 1 when K(p′) ▷ Knapsack constraint
return p′

Algorithm 8 Implementing LGCH Efficiently on the Search Framework
function LearningGuidedCoordHeu(t, p, t′, b, e)

▷ defines CoordHeu(t, p, t′, b, e)
p′ ← p

for i ∈ I(t′[b, e]) do ▷ unpick any order
if p′i = 1 ∧ ri < B[t′(li)] then

p′i ← 0

for e ≥ k ≥ b do ▷ pick backward
for i ∈ I(t′k) do

if p′i = 0 ∧ ri ≥ B[k] then
p′i ← 1 when K(p′)

return p′

function computeBPRs(N)
B : BPR for each position k

R ← sort all unique ri in increasing order
for 0 < k < n do
B[k]← computeBPR(N ,R, k)

return B

function computeBPR(N ,R, k)

NP← k

n
low ← 0

high← |R| − 1

while low ≤ high do ▷ perform binary search
mid← (low +mid)/2

NIPR← R[mid]

maxi(ri)
if N (NIPR,NP) = 1 then

high← mid− 1

else ▷ if N (NIRP,NP) = 0
low ← mid+ 1

if low = |R| then
return maxi(ri) + 1

else
returnR[low]

for each position and thus taking only O(n) memory and O(n log2 m) calls ofN . The idea is to store the profitability ratio, called
the boundary profitability ratio (BPR) that approximately demarcates the collected items from the uncollected items in a given
position. The idea is again based on the previously mentioned key guideline for TTP that at a given position, more profitable
items are more likely to be collected. The notions of lowest collected IPR and highest uncollected IPR are relevant in this context.
However, instead of two such IPRs, we rather use one BPR in this case. Nevertheless, Algorithm 8 shows our implementation

of computing BPR for each position. In Function computeBPRs in Algorithm 8, we first sort profitability ratios of all items in
a non-decreasing order and store only unique values in increasing order in R. Then, for each position k, we store in B[k] the
value returned by Function computeBPR(N ,R, k) that runs binary search to find the profitability ratio below which items are
not collected at position k. Next, we redefine Function LearningGuidedCoordHeu(t, p, t′, b, e) to be returning p′ where for
i ∈ I(t′[b, e]), p′i = 1 when ri ≥ B[t′(li)] and p′i = 0 when ri < B[t′(li)], and for i ̸∈ I(t′[b, e]), p′i = pi. Note that because of
the knapsack constraint, the precise implementation, as shown in Algorithm 8, needs unpicking of all items followed by picking of
the items predicted to be collected in the reversed tour segment. Also, note that after computing BPRs in B, we no longer need the
neural network N and BPRs are sufficient for the purpose of our machine learning guided coordination heuristic.

After computing BPRs using the trained neural network only to replace the same neural network with the computed BPRs, the
same question could come again whether we could use a simpler machine learning model. Considering the scope of this work, we
leave the quest for finding a better machine learning model for future. However, we make a particular note that an explicit metric
to determine the BPRs is not known to us and we have just relied on the implicit power of a neural network for this.

6 Experiments
We describe the benchmark instances that we use in our experiments. We also discuss the experiment settings and evaluation
metrics. Then, we compare various versions of our proposed solver. Finally, we compare our proposed solver with existing
state-of-the-art TTP solvers.

6.1 Benchamrk TTP Instances
TTP solvers are typically evaluated using the benchmark instances introduced in [34]. Each TTP benchmark instance has been
generated based on the following things:

• A symmetric TSP instance with 51 to 85900 cities as taken from TSPLIB [37]. While generating the benchmark instances,
the number of cities has been used in determining the total number of items.

• A set I(c) of 1, 3, 5 or 10 items for each city c. So each TTP instance has m = (n− 1)× |I(c)| items. Note that maxc I(c)

is used in generating training solutions for LGCH in Section 5.6.

• Weights and profits of all items are (i) bounded and strongly correlated, or (ii) uncorrelated but weights are similar for all
items, or (iii) fully uncorrelated.

• A knapsack with a weight capacity indicator ranging from 1 to 10, where larger indicator means larger knapsack capacity
(not the knapsack capacity itself) [34].

Note that the exact TTP instances used in our experiments are downloaded from https://cs.adelaide.edu.au/~optlog/

CEC2014COMP_InstancesNew/. These instances have from 76 to 33810 cities and from 75 to 338090 items with the knapsack
capacity from 5780 to 153960049 unit of weight. These instances are divided into 3 categories [15, 13]. Below we briefly describe
the three categories.

• CatA: The knapsack weight capacity is relatively small. There is only one item in each city. The weights and profits of the
items are bounded and strongly correlated.

• CatB: The knapsack weight capacity is moderate. There are 5 items in each city. The weights and profits of the items are
uncorrelated. The weights of all items are similar.

• CatC: The knapsack weight capacity is high. There are 10 items in each city. The weights and profits of the items are
uncorrelated.

As shown below, there are 20 TTP instances in each of the above three categories. The TTP instance names in each category
are based on the names of the same TSP instances that are used in generating the TTP instances. For each TSP instance, three TTP
instances are generated for three categories, just by changing the item distribution as discussed above in the description of the
categories. Notice that the numbers of cities appear in the names of the instances. Depending on the categories, the numbers of
items are various multiples of the numbers of cities.

1. eil76

2. kroA100

3. ch130

4. u159

5. a280

6. u574

7. u724

8. dsj1000

9. rl1304

10. fl1577

11. d2103

12. pcb3038

13. fnl4461

14. pla7397

15. rl11849

16. usa13509

17. brd14051

18. d15112

19. d18512

20. pla33810

https://cs.adelaide.edu.au/~optlog/CEC2014COMP_InstancesNew/
https://cs.adelaide.edu.au/~optlog/CEC2014COMP_InstancesNew/

We analyse the performance of the solvers on each category, but for overall analyses, we also use all 60 instances from the
three categories altogether. In the charts, unless mentioned otherwise, performance on the instances is plotted in the order CatA,
CaB, CatC of categories and within each category in the order of the instances as shown above. Notice that the order of instances
in this way within each category is roughly in the order of their sizes.

6.2 Settings
We run each solver version on each TTP instance 10 times, each time with a standard timeout of 10 minutes. For each run in all
experiments, we ensure a new initial cyclic tour is generated using the Chained Lin-Kernighan heuristic [2] whenever an initial
cyclic tour is needed in each run or in each restart in a run. We run all experiments on the high performance computing cluster
Gowonda with a 2 GB memory limit and an Intel Xeon CPU X5650 running at 2.66 GHz on each machine.

To measure performance differences across solvers, we use the relative deviation index (RDI) [21] for each solver on each TTP

instance. RDI for a given solver on a given TTP instance is defined as
Nmean −Nmin

Nmax −Nmin
× 100 where Nmax and Nmin are respectively

the maximum and minimum N(t, p) over all runs over all solver versions that we run for the respective experiment and Nmean is
the mean over all 10 runs of the same solver. Note that the larger the RDI value of a solver version, the better its performance.
While we use RDI values to present our main results, we do include in the appendix Nmax, Nmin, and Nmean along with Nstddev,
and Nmedian for each solver for each instance where Nstddev and Nmedian are the standard deviation and median of N(t, p) values
over the 10 runs of the solver on the instance.

We use Wilcoxon Signed Rank Test with 95% confidence interval and also 95% Confidence Interval plots to show the
significance of differences in the performances of various solvers and versions.

We use line charts to compare instance specific performances of various solvers. The line charts have the problem instances on
the x-axis. The problem instances are sorted on the number of cities within each category. We have noted before that the number
of items in each instance depends on the number of cities. Nevertheless, it is in general difficult to find a well-justified order of the
instances in terms of hardness even when the numbers of cities and items increase in TTP and as such we do not intend to find any
obvious trend. Given that no trend is intended among the problem instances, one could think of using bar charts in such cases. We
do not use bar charts because with large numbers of data points, the bodies of the bars make extracting information from the peaks
of the bars difficult by matching the same type bars.

6.3 Comparison of Proposed Solver Versions
In Algorithm 2, in Function TSPS, we have four ways to define Function CoordHeu: NoCoordHeu, SearchGuidedCoordHeu,
ProfitGuidedCoordHeu, and LearningGuidedCoordHeu, which are respectively denoted by NOCH, SGCH, PGCH, and LGCH.
Further, in Algorithm 2, in Function TSPS, Function KPS can be run in two ways: standard bit-flip search and marginal
bit-flip search, which are respectively denoted by SBFS and MBFS. Note that MBFS uses coordinated item selection heuristic
(CISH) to limit BitFlip operators only on the marginal items. So we denote our proposed solver version by X + Y , where
X ∈ {NOCH,SGCH,PGCH,LGCH} and Y ∈ {SBFS,MBFS}. For example, NOCH+SBFS denotes a solver version having
NOCH and SBFS, and is the baseline version as described in Section 4.4.

6.3.1 Overall Effectiveness of MBFS Approach

Figure 7 shows that NOCH+MBFS outperforms NOCH+SBFS and PGCH+MBFS outperforms NOCH+SBFS. The differences
are clear in the large instances in all three categories albeit some mixed performances by PGCH+MBFS and PGCH+SBFS in small
CatB and CatC instances and in CatA instances that all have comparatively small number of items. Exploring only marginally
collected and uncollected items using CISH inside MBFS approach allows more focused exploration and more efficient utilisation
of the limited time budget. In the instances having fewer items, the restriction however excessively reduces the search space and
narrows down the chance of finding better solutions due to lack of diversity. Nevertheless, we compute p-values of Wilcoxon
Signed Rank Test on the RDI values of all 60 instances. The p-value for NOCH+MBFS and NOCH+SBFS is 0.00001 while
that for PGCH+MBFS and PGCH+SBFS is 0.0012. So at 95% confidence level, we conclude our MBFS approach statistically
significantly improves the performance over SBFS.

6.3.2 Overall Effectiveness of PGCH Approach

Figure 7 shows that overall PGCH+SBFS outperforms NOCH+SBFS and PGCH+MBFS outperforms NOCH+MBFS. The
differences are very clear and large in almost all instances in all three categories. We compute p-values of Wilcoxon Signed Rank
Test on the RDI values of all 60 instances. The p-value for PGCH+SBFS and NOCH+SBFS is 0.00001 and that for PGCH+MBFS
and NOCH+MBFS is also 0.00001. So at 95% confidence level, we conclude our PGCH approach statistically very significantly
improves the performance over the NOCH approach.

6.3.3 Learning Details of LGCH Approach

Table 1 shows the learning details of the LGCH approach. The training times in the table include the time spent in generation of
training and validation solutions, sorting and selecting unique ⟨nipr(i), np(i)⟩ pairs from generated solutions, training 10 neural
networks, and finally computing boundary profitability ratios (BPRs) to be used in Algorithm 8. Given the timeout of 10 minutes
for each TTP instance, notice that the maximum training time needed is about 4 minutes and is in the largest CatA instance. Within
the same category, training time increases with the increase of the problem size. For the same TSP instance, the training time
decreases from CatA to CatB to CatC. This is because to keep the number of input ⟨nipr(i), np(i)⟩ pairs to the neural network
almost the same for all three categories, we generate more training and testing solutions in CatA than in CatB and CatC (30, 6 and
3 solutions for training and 15, 3 and 2 solutions for validation in CatA, CatB, and CatC respectively). In the table, we also show
the percentage of unique ⟨nipr(i), np(i)⟩ pairs with respect to the total number of pairs found in the example collection plans. As
problem size increases, the percentage of unique pairs arguably increases. Nevertheless, the average accuracy values of the neural
networks for the training and validation ⟨nipr(i), np(i)⟩ pairs are very high (above 95%). The mean validation accuracy over the
60 instances is very slightly better than the mean training accuracy. The p-value of the Wilcoxon Signed Rank Test is 0.0455 for
the training and the validation accuracy values and so the difference is still statistically significant at 95% confidence level.

6.3.4 Overall Comparison of PGCH, SGCH, and LGCH

In Figure 8, we compare RDI values obtained by PGCH, SGCH, LGCH, and NOCH on all 60 instances from three categories.
For these solver versions, we use MBFS since it has already been shown to be better than SBFS. The solver versions compared
are respectively PGCH+MBFS, SGCH+MBFS, LGCH+MBFS, and NOCH+MBFS. We see that PGCH and LGCH make huge
improvement over NOCH. However, SGCH performs worse than NOCH. The reason is running KPS for every tour segment
reversal, even when KPS is restricted only to the reversed segment, takes huge time and consequently within a given timeout of 10
minutes, not much of the TTP search space is explored. Note that we include SGCH in this comparison mainly to show that a
simple local search based coordination approach does not work well in TTP. Nevertheless, among other heuristics, PGCH appears
to be performing slightly better than LGCH. With the p-value of 0.00782 of Wilcoxon Signed Rank Test, the difference in the
performances of PGCH and LGCH is also statistically significant at 95% confidence level. This result is very interesting as we can
see that the machine learning based algorithm LGCH has learnt almost up to the level of the human designed PGCH heuristic.

Figure 9 shows the numbers of restarts in Function TTPS in Algorithm 1 in each instance when SGCH, PGCH, LGCH, and
NOCH are used along with MBFS. We see that SGCH performs the least numbers of restarts since it spends huge time in running
KPS for each tour segment reversal in TSPS. The low numbers of restarts also indicate low diversity in terms of the search space
exploration. Notice that PGCH and LGCH performs very similar numbers of restarts in all instances. The numbers of restarts
performed by NOCH are very similar to those performed by PGCH or LGCH in small instances in each category, but is quite
larger in large instances. NOCH is arguably faster than PGCH or LGCH and so help explore more of the search space by restarting
more number of times. However, with a poor evaluation of the generated cyclic tours, NOCH eventually does not result into better
RDI values.

Figure 7: RDI values obtained (y-axis) on problem instances (x-axis) by various versions of our proposed solver to show the
effectiveness of MBFS over SBFS and PGCH over NOCH, and also the interaction of MBFS and PGCH

Table 1: Training time in seconds, % of unique pairs among all pairs ⟨nipr(i), np(i)⟩ in training and validation solutions, %
average training accuracy, and % average validation accuracy over the 10 neural networks trained in LGCH

TTP CatA CatB CatC
Problem Train Unique Train Valid. Train Unique Train Valid. Train Unique Train Valid.
Instance Time Pair % Acc % Acc % Time Pair % Acc % Acc % Time Pair % Acc % Acc %
eil76 9.45 31.76 95.52 95.59 2.92 48.53 98.58 98.53 1.61 76.80 97.88 98.17
kroA100 85.53 24.47 97.65 97.54 8.51 72.88 99.04 99.31 4.34 92.59 98.92 98.89
ch130 31.71 39.74 96.68 96.64 1.99 42.38 98.55 98.66 1.65 70.10 98.45 98.76
u159 30.54 19.04 97.81 97.75 2.80 36.03 99.25 99.15 1.99 60.51 98.75 98.88
a280 5.62 35.34 97.47 97.40 2.43 78.64 99.21 99.16 3.29 83.58 98.75 98.60
u574 17.78 33.53 98.81 98.77 4.84 63.07 99.02 98.89 5.29 92.26 98.19 98.15
u724 16.36 57.21 98.21 98.25 5.70 51.97 99.28 99.36 5.58 98.60 98.55 98.63
dsj1000 52.53 67.89 98.42 98.51 15.61 94.53 99.02 99.10 4.98 99.84 98.01 97.77
rl1304 31.88 49.38 98.40 98.58 10.80 83.32 99.04 99.10 8.19 83.96 98.19 98.14
fl1577 53.16 70.87 98.49 98.49 16.46 90.26 99.05 99.06 12.27 90.85 97.65 97.92
d2103 34.86 51.49 98.89 98.83 7.57 64.17 99.41 99.34 9.69 99.39 97.30 97.44
pcb3038 44.65 89.79 98.76 98.83 14.26 97.18 99.41 99.46 12.82 98.94 97.74 97.76
fnl4461 70.63 95.01 98.81 98.81 19.75 98.98 99.18 99.36 13.32 99.75 98.51 98.40
pla7397 83.89 94.32 97.99 98.02 27.02 98.30 97.53 97.40 31.74 99.25 97.72 98.14
rl11849 129.84 97.65 99.01 99.04 49.32 99.54 99.44 99.45 64.70 99.90 98.74 98.70
usa13509 116.14 95.87 98.26 98.26 42.18 98.60 97.81 97.91 59.85 99.23 97.50 97.76
brd14051 126.42 97.53 98.87 98.87 49.04 99.64 98.88 99.04 46.92 99.83 98.01 98.12
d15112 160.17 97.81 98.90 98.87 65.32 99.72 99.13 99.15 71.33 99.94 98.18 98.15
d18512 137.85 97.82 98.74 98.75 60.98 99.71 98.89 98.95 98.41 99.93 98.10 98.10
pla33810 233.37 98.12 98.79 98.81 101.91 99.77 99.18 99.29 144.13 99.96 98.65 98.62

Figure 8: RDI values obtained (y-axis) on problem instances (x-axis) by various versions of our proposed solver to show the
comparison of SGCH, PGCH, LGCH, and NOCH when MBFS is used with all of them.

Figure 9: Numbers of restarts (y-axis) in Function TTPS in Algorithm 1 in problem instances (x-axis) by various versions of our
proposed solver to show the comparison of SGCH, PGCH, LGCH, and NOCH when MBFS is used with them.

6.4 Further Analysis of PGCH and LGCH over NOCH
To investigate the huge difference in the performance of PGCH and LGCH from NOCH, we observe the reverse tour segments

generated, evaluated, and accepted during search. Figure 10 shows the mean relative lengths
|t[b, e]|

n
× 100 of the tour segments

reversed by 2OPT and accepted by the search algorithm in Function TSPS over 10 runs when used with NOCH, PGCH and LGCH
along with MBFS. Moreover, Figure 11 shows the mean numbers of the tour segments of which mean lengths have been shown in
Figure 10. From these two figures, we see that the use of PGCH and LGCH has resulted in the acceptance of notably larger tour
segments reversed by 2OPT operator and also in larger numbers than what NOCH has resulted in. In the absence of a coordination
heuristic, as shown in Figure 5, the quality values of the cyclic tours produced by 2OPT are not estimated properly and thus the
reversed tour segments are rejected by the search algorithm. Arguably, this happens even at an worsened level when reversed tour
segments are large in sizes and more in numbers. In contrast, when a coordination heuristic such as PGCH or LGCH is used, the
quality values of the reversed tour segments are more properly estimated and as we see from Figures 10 and 11, larger reversed tour
segments are accepted in larger numbers and thus we have obtained higher objective values at the end. This explains the advantage
of PGCH and LGCH over NOCH. Notice that both in Figures 10 and 11, PGCH and LGCH are very close in most TTP instances,
except in Figure 10 in CatA instances. However, CatA instances have only one item in each city. As such picking or unpicking
the only available item in each city by mistake as a classification error of the neural network is harder to compensate than the
classification errors in CatB and CatC.

Figure 10: Mean of relative lengths (y-axis) of tour segments reversed by 2OPT and accepted by the search algorithm in
Function TSPS over 10 runs when NOCH, PGCH, and LGCH are used along with MBFS on problem instances (x-axis)

Figure 11: Mean of numbers of accepted application of 2OPT per restarts in Function TTPS over 10 runs when NOCH, PGCH,
and LGCH are used along with MBFS on problem instances (x-axis)

Figure 12: Mean objective gains (y-axis) GTSP by TSPS per restarts in TTPS over 10 runs of Algorithm 1, when NOCH, PGCH,
and LGCH are used along with MBFS on problem instances (x-axis)

In Algorithm 1 in Function TTPS, we compute the objective values NBS and NTSP respectively before and after running TSPS.

We then compute means of objective gains GTSP =
NTSP −NBS

NBS
× 100 over all iterations of the outer loop in TTPS over all 10

runs of Algorithm 1 for each instance. The mean objective gains are shown in Figure 12. We see that, in GTSP, in most cases,
PGCH is better than LGCH, which is better than NOCH. The performance difference of NOCH from that of PGCH or LGCH is
arguably huge in CatB and CatC instances. This is explainable as PGCH or LGCH is targeted to improve evaluation of the cyclic
tours produced by 2OPT and the better evaluation results in accepting longer and more tour segment reversals and hence better
GTSP values.

6.5 Comparison with Existing TTP Solvers
We compare our proposed MBFS with a simulated annealing method in terms of the performance improvement in the KP
component while we use PGCH with both. We then compare our PGCH+MBFS and LGCH+MBFS solvers with other existing
state-of-the-art TTP methods.

6.5.1 Comparison of MBFS with Simulated Annealing Search

We compare our hill-climbing based MBFS algorithm with a simulated annealing search (SAS) algorithm [15] for the KP component
of TTP. The SAS algorithm defines Function KPS(t, p, 1, n− 1) to be called in Function TTPS in Algorithm 1. For Function

TSPS, we use PGCH in this case with both MBFS and SAS. We compute means of objective gains GKP =
NKP −NTSP

NTSP
× 100

over all iterations of the outer loop in TTPS over all 10 runs of Algorithm 1 for each instance. Figure 13 shows that MBFS is
very slightly better than SAS in mean GKP values. However, the difference is statistically not significant with p-value 0.27572 of
Wilcoxon Signed Rank Test at 95% confidence level.

Interestingly, as per Figure 14, RDI values obtained by using MBFS are significantly higher than those obtained by using
SAS. The p-value of the Wilcoxon Signed Rank Test is 0.00001. To understand this apparent anomaly, in Figure 15, we compare

Figure 13: Mean objective gains (y-axis) GKP over all iterations of the outer loop of TTPS over 10 runs of Algorithm 1, when
MBFS and SAS are used along with PGCH on problem instances (x-axis)

Figure 14: RDI values obtained (y-axis) on problem instances (x-axis) when MBFS and SAS are used along with PGCH

Figure 15: Numbers of restarts (y-axis) on problem instances (x-axis) when MBFS and SAS are used along with PGCH

Table 2: Comparison of RDI values obtained by the proposed CoCoP and CoCoL solvers and those obtained by MATLS, S5, and
CS2SA*. Emboldened values denote the best performers.

Problem CatA CatB CatC
Instance MATLS S5 CS2SA* CoCoP CoCoL MATLS S5 CS2SA* CoCoP CoCoL MATLS S5 CS2SA* CoCoP CoCoL
eil76 72.2 100.0 15.4 100.0 100.0 95.4 80.3 20.1 95.7 99.4 95.5 86.9 74.5 91.3 90.7
kroA100 47.1 69.9 9.9 85.8 81.6 49.0 92.2 12.1 97.7 95.1 67.9 71.1 33.2 99.8 94.6
ch130 57.6 88.2 45.7 96.7 96.5 92.7 94.6 19.1 98.8 98.8 66.5 96.1 20.4 95.6 97.3
u159 74.9 79.0 57.1 88.5 91.5 18.1 89.7 17.7 93.0 95.3 16.0 55.0 50.0 82.2 80.7
a280 42.5 88.9 52.4 97.4 91.2 31.9 31.3 54.2 100.0 99.9 69.0 98.3 41.4 100.0 99.7
u574 57.3 77.1 33.2 84.4 93.5 53.1 43.5 22.1 92.6 95.7 92.0 93.8 63.8 98.8 96.1
u724 66.4 83.5 44.2 95.4 96.4 13.9 44.3 36.5 97.5 91.8 56.6 58.3 25.0 85.7 92.9
dsj1000 85.7 3.1 100.0 100.0 100.0 66.7 69.1 34.8 96.1 98.2 84.5 88.3 42.3 98.3 96.1
rl1304 23.9 90.3 16.8 98.5 94.6 23.7 54.9 31.4 94.3 91.7 72.2 75.1 39.2 99.3 96.5
fl1577 65.4 95.1 29.7 95.0 96.6 68.6 78.4 45.9 96.2 96.2 79.2 84.7 42.4 92.5 90.1
d2103 1.8 82.9 62.3 93.7 92.5 39.5 67.2 53.7 96.6 96.3 27.9 48.3 17.9 95.8 85.9
pcb3038 33.0 89.6 23.8 95.2 96.3 60.7 70.4 60.9 97.6 95.8 69.9 79.3 71.2 97.4 86.6
fnl4461 32.7 87.4 5.1 96.7 91.4 22.1 39.4 34.4 86.9 82.2 70.2 68.1 63.3 96.5 91.6
pla7397 78.2 95.6 43.0 98.1 97.1 74.9 83.2 49.9 97.7 93.3 66.5 76.7 49.1 95.2 89.3
rl11849 32.7 89.9 8.9 98.4 94.2 20.9 25.2 32.4 87.4 67.5 53.5 43.4 44.9 68.8 75.1
usa13509 57.1 94.4 23.2 95.5 93.9 57.0 65.4 58.4 90.5 82.8 83.0 83.3 81.8 93.5 95.9
brd14051 28.1 88.8 11.3 94.1 95.3 72.1 76.8 75.3 93.2 92.7 47.6 49.3 54.0 80.6 70.3
d15112 25.2 78.3 13.2 91.7 95.4 14.7 28.4 62.5 79.1 80.9 11.1 27.0 63.8 89.3 88.8
d18512 60.7 92.7 18.7 97.7 95.5 73.9 76.5 74.2 92.9 89.9 34.3 31.9 55.5 83.9 59.3
pla33810 27.7 87.0 19.1 93.2 94.0 70.1 77.5 42.5 96.8 89.9 74.3 56.2 40.0 93.1 84.4

numbers of restarts i.e. the numbers of iterations the outer loop in Function TTPS in Algorithm 1 runs with MBFS or SAS, along
with PGCH in TSPS of course. We see that MBFS leads to a huge numbers of restarts compared to what SAS leads to. This
indicates that via more restarts, MBFS leads to greater diversity and eventually better RDI values while SAS spends time in the
simulated annealing process and does not get good RDI values. We further reason that with targeted search, MBFS converges
quickly to local optima and thus resorts to restarts more often while SAS solely depends on diminishing probabilities of accepting
worse solutions and thus get out of local optima. Notice that the numbers of restarts get lower with the increase in the problem size.
This is because in large problems, arguably only fewer or even no restarts could take place within a limited timeout of 10 minutes.

6.5.2 Comparison with MATLS, S5, and CS2SA* Solvers

We name our final TTP solver as Cooperative Coordination (CoCo) and based on the experimental results presented so far, we
obtain two CoCo versions. These two versions are PGCH+MBFS and LGCH+MBFS, and for the rest of the paper, we respectively
name them as CoCoP and CoCoL.

We compare our CoCoP and CoCoL solvers with three existing state-of-the-art TTP solvers such as MATLS [26], S5 [17]
and CS2SA* [15]. CS2SA* is selected because our TTP search framework in Algorithms 1 and 2 is similar to its cooperational
coevoluation approach. MATLS and S5 are selected due to their salient performance reported in [43]. The source code for CS2SA*
and MATLS has been obtained from the corresponding authors. We have reconstructed S5 ourselves and S5 does not have any
parameters to be tuned.

CS2SA* and Recent Descendants After CS2SA* [15], two further TTP methods [23, 46] have been reported. Below are several
observations about these methods.

• CS2SA* [15]: It is reported in [45] that CS2SA* and its precursors incorrectly present the objective values by taking the
rounded values of the distances between cities. This is different from the definition of TTP benchmark instances [34]. As
such this makes CS2SA* incomparable with other TTP methods. [43] reports more issues with the precursor of CS2SA*.
Further to these, while investigating the source code of CS2SA*, we have observed that it uses the same stored high quality
TSP tour in each run and mainly focuses on improving the collection plan. This partially explains why its precursor [13]
somewhat misleadingly concludes that the KP component of the TTP is more critical compared to the TSP component for
optimisation while our effort in the TSP component shows otherwise. Nevertheless, using the same TSP tour in each run
of a TTP method does not conform to the standard practice in empirical evaluation of methods that have stochasticity in
decision making. For a fair comparison in this paper, when we run CS2SA* in our experiments, we compute the objective
values correctly and also use different TSP tour in each run.

• A CS2SA* descendant [23]: This method follows the same incomparable empirical evaluation style of CS2SA* [15]. This
method more explicitly shows that it is a fixed tour method. Moreover, its evaluation is based on only 9 benchmark instances.
As such, we do not compare our proposed TTP solvers with this method.

• Another CS2SA* descendant [46]: This method follows the same incomparable experiment setup as CS2SA* [15] does.
Unfortunately, its source code is not available. Moreover, while making an attempt to reconstruct this method and to run as
we do with CS2SA*, we could not find necessary details in its corresponding published article. The pseudocode is unclear
and appears to have issues that include (i) by definition item scores cannot be negative but pseudocode has conditions on
that, (ii) the loop does not terminate unless the knapsack is full but practically it might be partially filled, and (iii) items
are sorted by their scores but are picked mainly in the order of the cities. As a result of all these, we do not compare our
proposed TTP solvers with this method.

Table 2 shows the RDI values obtained by CoCoP, CoCoL, MATLS, S5, and CS2SA* solvers. From the table, we see that
CoCoP performs better than CoCoL. Both CoCoP and CoCoL outperform the other three solvers in almost all problem instances in
all three categories. Moreover, S5 performs the third best but with a big difference with CoCoP and CoCoL while CS2SA* is the
worst performer. The 95% confidence interval plots of the RDI values in Figure 16 also shows the statistical significance of the
performance differences. More specifically, the p-value for Wilcoxon Signed Rank Test on the RDI values obtained by CoCoP and
S5 is 0.00001 and by CoCoL and S5 is also the same. These indicate very highly significant differences. The overlapping intervals
of CoCoP and CoCoL shows that their performance difference is statistically not significant. Nevertheless, Tables A1, A2, and A3
in the appendix provide further details on the objective values obtained by various solvers.

Figure 17 shows that in sample runs of S5, CoCoP and CoCoL on CatC pla33810 instance, CoCoP makes good progress before
getting into the flat region. CoCoL shows a better trend than S5 but is worse than CoCoP. The difference in CoCoP and CoCoL is
that CoCoL’s search relies on the pattern learnt from its training solutions which are arguably not very high quality and so its

MATLS S5 CS2SA* CoCoP CoCoL

40
50
60
70
80
90

RD
I

Figure 16: 95% confidence intervals for our proposed CoCo solver and existing state-of-the-art TTP solvers such as MATLS, S5,
CS2SA*, and CoCo. Overlapping confidence intervals mean the performance differences are not significant.

Figure 17: Sample changes in best objectives (y-axis) in each second (x-axis) by the best performing three solvers S5, CoCoP and
CoCoL on CatC pla33810 instance. For better visual representation, plotted values are actually the maximum objective value
obtained by any of the three solvers minus the objective value obtained by the respective solvers at the respective timepoints.
Moreover, the logarithmic scale in the y-axis is used. So the lower the better in the chart although TTP is by definition a
maximisation problem.

Table 3: Comparison of RDI values obtained by S5, CoCoP, and CoCoL solvers when 1-hour timeout is used instead of standard
10-minute timeout; all other settings remain the same. Emboldened values denote the best performers among four solvers.

Problem CatA CatB CatC
Instance S5 CoCoP CoCoL S5 CoCoP CoCoL S5 CoCoP CoCoL
eil76 100.0 100.0 100.0 89.0 92.2 96.0 84.1 100.0 37.0
kroA100 44.1 95.9 97.3 29.6 89.2 50.1 86.7 99.2 97.4
ch130 4.0 85.0 78.5 0.0 90.3 86.5 62.1 73.6 81.1
u159 4.4 34.0 64.9 4.0 100.0 96.5 32.8 99.9 99.9
a280 0.9 48.1 46.2 1.8 100.0 99.9 0.0 100.0 100.0
u574 9.8 30.1 71.8 2.2 81.4 92.0 9.0 71.8 52.9
u724 7.0 76.4 81.3 7.3 94.5 97.2 7.2 87.8 78.5
dsj1000 5.1 100.0 100.0 3.9 88.7 84.1 26.7 65.6 58.3
rl1304 19.9 70.3 55.7 14.6 80.7 80.6 28.2 76.7 81.3
fl1577 67.6 66.7 70.7 13.9 66.7 63.4 24.3 31.2 58.2
d2103 12.9 68.7 74.6 14.6 92.1 94.2 9.1 88.3 83.6
pcb3038 9.6 55.0 66.4 15.0 88.3 89.4 16.3 81.2 71.2
fnl4461 12.4 78.6 63.1 6.8 71.4 77.3 16.8 83.8 70.6
pla7397 11.2 76.0 66.7 26.4 92.0 83.6 22.9 86.3 77.4
rl11849 14.5 77.9 67.6 10.1 75.2 82.4 13.9 74.2 66.6
usa13509 30.0 72.2 23.6 14.5 91.2 84.1 16.5 92.9 76.4
brd14051 8.9 84.7 62.7 12.6 83.7 77.4 18.4 82.2 69.6
d15112 13.5 74.5 64.1 9.5 82.8 79.7 12.6 85.1 77.7
d18512 20.0 76.6 63.6 17.1 84.1 81.7 18.0 71.4 46.8
pla33810 15.4 61.8 53.7 19.8 78.4 70.4 27.4 79.9 54.4

Table 4: Comparison of average execution times and RDI values of MEA2P and CoCoP on 8 instances in each category.

TTP % Unique CatA CatB CatC
Problem CLK Init Avg Time RDI Avg Time RDI Avg Time RDI
Instance Solutions MEA2P CoCoP MEA2P CoCoP MEA2P CoCoP MEA2P CoCoP MEA2P CoCoP MEA2P CoCoP
eil76 3.3 45s 27s 43.0 72.0 2.3m 29s 97.0 32.0 4.7m 40s 100.0 48.9
kroA100 1.2 93.6s 49s 94.4 0.0 5m 51s 99.4 50.4 10m 1.1m 100.0 0.5
ch130 4.9 3m 1.7m 84.1 54.3 9.8m 1.6m 92.9 15.8 20.3m 2.1m 79.7 39.6
u159 4.4 7.2m 1.2m 71.2 0.0 16.8m 1.3m 78.0 5.8 31.1m 1.7m 100.0 4.8
a280 80.3 31.8m 1.7m 54.4 7.0 1.3h 1.9m 56.4 73.9 2h 2.7m 73.4 100.0
u574 65.1 4.5h 10.6m 61.1 10.4 12.9h 10.4m 40.0 1.9 25.2h 12.6m 47.6 73.1
u724 90.2 6.5h 9.2m 30.9 89.1 1.2d 10.4m 44.7 52.6 2.1d 13m 48.5 78.5
dsj1000 87.3 5.9h 39.3m 9.8 100.0 3.4d 44.3m 40.9 30.2 6.3d 44.1m 58.3 81.0

prediction does not help much when already further better solutions are found over time.
Table 3 shows the performances of the three best solvers S5, CoCoP, and CoCoL, when the timeout is 1 hour instead of the

standard of 10 minutes. We see that the three solvers perform similarly with the longer timeout as they do with the shorter timeout.
This shows the consistency of their performance over the time horizon.

6.5.3 Comparison with a Recent Solver MEA2P

We compare our proposed best performing CoCoP solver with a recent TTP solver named MEA2P [45]. MEA2P is a steady
state Memetic algorithm with Edge-Assembly [29] and Two-Points crossover (EAX) operators. Like a number of other solvers
[42, 25, 24, 16], MEA2P is targeted to solve small TTP instances. For its initial population, MEA2P generates 50 solutions,
each with a random cyclic tour and an empty collection plan. Then, in each of its 2500 iterations, MEA2P generate a new
solution by combining two randomly selected solutions using the edge-assembly crossover operator [29] on the cyclic tours and the
two-point crossover operator on the collection plans. The initial solutions and the subsequently generated combined solutions are
improved using a local search method that uses 2OPT [8], node insertion [17], bit-flip [34, 17] and item exchange [27] moves in an
interleaving fashion.

MEA2P demands heavy computation time particularly in large problems. Therefore, for a meaningful comparison, instead of
running for 10 minutes, we run both MEA2P and CoCoP with a termination criterion of 2500 restarts for each TTP instance. Also,
we use only the 8 small instances from each of the three categories. For large instances MEA2P takes hours and days. As we see,
this experiment setting is different from the settings in other earlier experiments presented in this paper.

Table 4 shows the average execution times and the RDI values obtained by MEA2P and CoCoP on 8 small instances. Moreover,

Tables A4, A5, and A6 in the appendix provide further details on the execution times and the objective values obtained by the two
solvers. Nevertheless, from these tables, we see that MEA2P runs in the scale of hours and days while CoCoP runs in the scale of
seconds and minutes. Overall, MEA2P takes a number of times the execution time of CoCoP. In RDI values, MEA2P achieves very
good performance in small instances while CoCoP achieves so in large instances. We further investigate the reasons behind such
performance. MEA2P is a population based algorithm that aims to maintain diversity by starting from random solutions, keeping a
number of solutions in its population, and using combination operators. In small instances, MEA2P affords the time to explore the
search space to a large extent and obtains better objective values. However, CoCoP is a single-solution based search algorithm that
depends on Chained Lin-Kernighan (CLK) heuristic [2] for initial cyclic tours, and PackIterative [17] and Insertion [26] methods
for initial collection plans. So the greater diversity needs to come from the search restart or from the initial solution generators.
In Table 4 Column 2 (title “% Unique CLK Init Solutions”), we show the relative unique initial cyclic tours found by the CLK
heuristic. These numbers essentially help us explain that CoCoP performs better when CLK generates large numbers of unique
initial cyclic tours, which is more usual in large instances than in small ones.

Comments on a Recent Method Presented in [33] For convenience, we use NNN to refer to the recent TTP method presented
in [33]. Upon careful consideration, we do not compare the proposed method with NNN. There is considerable overlap between
NNN and MEA2P [45], and as such a comparison against NNN appears redundant. Furthermore, the results obtained by NNN do
not appear to have compelling advantages. The detailed reasons are further discussed below.

1. NNN and MEA2P are both evolutionary algorithms. Both use EAX crossover operators on tours to generate neighbour TTP
solutions. The only difference between the two methods is that NNN keeps the current generation in a structured form while
MEA2P uses a flat one-dimensional form.

2. NNN neither provides comparisons with the most relevant MEA2P method nor does it cite MEA2P, even though the two
methods are ostensibly very similar. Moreover, NNN uses problem instances that are mostly different from what MEA2P
uses. Looking at the common instances, MEA2P performs better on a280 instances, while NNN performs better on eil51
instances. Based on the presented results, it is unclear whether NNN is actually better than MEA2P. In this paper, we have
already shown MEA2P performs better than the proposed method on small instances, while the proposed method is better
on large instances.

3. NNN uses dynamic programming for KP but only for tiny instances with at most 280 cities. In contrast, our benchmark
instances have the numbers of cities in the range of 76 to 33810. For larger instances (maximum 4461 cities), NNN uses a
bitflip local search method instead of dynamic programming. This indicates that dynamic programming does not scale up in
large problem instances. Indeed, the paper on NNN also states that.

6.5.4 Best Objective Values Obtained

Table 5 shows the best objective values obtained by the CoCo variants against those obtained by other existing solvers when
running for 10 minutes. The best objective values for other solvers are obtained from the results in Section 6.5.2, from the results
reported in [45], and also the results reported in [43] (excluding the results of CS2SA solver [13] due to a faulty evaluation in it as
reported in [45]). Notice that CoCo variants obtain new best results on most large problem instances.

7 Conclusion
A travelling thief problem (TTP) has profitable items scattered over cities and a thief rents a knapsack and performs a cyclic tour to
collect some items and thus maximises the profit while minimises the travelling time and so the renting cost of the knapsack. Thus
a TTP has two components: one component is like the travelling salesman problem (TSP) and the other component is like the
knapsack problem (KP). TTP is computationally NP-Hard since both TSP and KP are NP-Hard. TTP is a proxy to many real-world
problems such as waste collection and mail delivery.

TTP research has made significant progress lately. However, most existing TTP methods do not explicitly exploit the mutual
dependency of the two components and thus lack proper coordination. In this paper, we show first that a simple local search based
coordination approach does not work in TTP. We then propose one coordination heuristic for changing collection plans during
cyclic tour exploration and another for explicitly exploiting cyclic tours during collection plan exploration. We further propose a
machine learning based coordination heuristic that captures characteristics of the human designed coordination heuristics. Our
proposed coordination based approaches help our TTP solver explore better TTP solutions within given timeout limit. Consequently
our proposed solver named Cooperation Coordination (CoCo) significantly outperforms existing state-of-the-art TTP solvers on a
set of benchmark problems. CoCo is available from https://github.com/majid75/CoCo.

https://github.com/majid75/CoCo

Table 5: Best objective values obtained by CoCo variants and other algorithms, each running for 10 minutes on each instance in
each of the three categories. The new best objective values obtained are in boldface.

Instance
CatA CatB CatC

CoCo Other CoCo Other CoCo Other
Variants Solvers Variants Solvers Variants Solvers

eil76 4109 4109 22464 23278 88211 88386
kroA100 4881 4976 45812 46633 159112 159135
ch130 9632 9682 61842 62496 207902 207654
u159 8979 9064 61077 60968 249875 249875
a280 18702 18452 116458 115252 429138 429082
u574 28282 27238 261515 257912 970343 969247
u724 51427 50402 323123 313735 1209029 1200310
dsj1000 144426 144219 372837 352185 1496922 1483610
rl1304 81921 81376 602276 584957 2214091 2207470
fl1577 94066 93861 639843 619577 2500736 2496440
d2103 122902 121981 927992 899581 3501889 3453096
pcb3038 162321 160733 1205850 1190198 4600973 4596672
fnl4461 265322 263040 1653828 1631325 6575472 6563377
pla7397 402199 395992 4485629 4452480 14572352 14304342
rl11849 716458 709512 4823625 4690137 18569005 18394454
usa13509 817069 810455 8343799 8137189 26728716 26626726
brd14051 887033 882244 6854612 6844392 24361366 24239842
d15112 975930 957409 7942036 7733280 27665466 27340647
d18512 1088840 1074510 7582022 7515276 27951166 27748430
pla33810 1928935 1910480 16332634 15898501 58900443 58292399

Acknowledgments
This research has been partly supported by Data61/CSIRO, Australia. We would like to thank our colleagues Toby Walsh, Phil Kilby,
and Regis Riveret at Data61/CSIRO for discussions leading to the improvement of this article. We also gratefully acknowledge the
support of the Griffith University eResearch Service & Specialised Platforms Team and the use of the Gowonda high performance
computing cluster.

Appendix
Tables A1, A2, and A3 show various statistics of the objective values obtained by MATLS, S5, CS2SA*, CoCoP, and CoCoL
solvers over 10 runs of each solver on each TTP instance. Tables A4, A5, and A6 show various statistics of the objective values
obtained by MEA2P, S5, CS2SA*, and CoCoP solvers over 10 runs of each solver on each TTP instance. The mean, median, and
standard deviations for each instance are computed over the runs of the same solver while the maximum and the minimum for each
instance are computed over all the runs of all solvers that are compared together.

Table A1: The median, the mean, and the standard deviation (StdDev) of the objectives values obtained over 10 runs of each of
MATLS, S5, CS2SA*, CoCoP, and CoCoL solvers on each CatA instance. Emboldened values are the largest median, the largest
mean, and the smallest standard deviation of the objective values over the five solvers. Moreover, the maximum and the minimum
of the objectives values obtained are over all 50 runs of all 5 solvers; these maximums and minimums are used in RDI computation
in Table 2.

CatA Metric MATLS S5 CS2SA* CoCoP CoCoL Min Max
Median 3655 4109 2697 4109 4109

eil76 Mean 3711 4109 2900 4109 4109 2679 4109
Sdev 84 0 354 0 0
Median 4493 4699 4300 4783 4746

kroA100 Mean 4540 4684 4304 4785 4758 4241 4875
Sdev 100 57 56 92 64
Median 8799 9404 8381 9564 9560

ch130 Mean 8799 9400 8565 9567 9564 7668 9632
Sdev 0 11 568 10 39
Median 8583 8634 8459 8763 8792

u159 Mean 8579 8634 8337 8763 8805 7562 8920
Sdev 54 0 279 0 40
Median 17706 18418 17878 18556 18437

a280 Mean 17649 18420 17814 18561 18458 16943 18605
Sdev 151 13 503 21 34
Median 26279 27083 24886 27383 27915

u574 Mean 26017 27069 24735 27453 27937 22973 28282
Sdev 529 69 1397 205 155
Median 49097 50346 47909 51109 51128

u724 Mean 49223 50340 47774 51120 51185 44882 51419
Sdev 818 19 1152 65 166
Median 143280 137889 144219 144219 144219

dsj1000 Mean 143280 137866 144219 144219 144219 137661 144219
Sdev 0 134 0 0 0
Median 74799 81111 74465 81764 81411

rl1304 Mean 75159 81018 74527 81737 81393 73049 81874
Sdev 913 443 1183 80 327
Median 88254 93337 83427 93571 93585

fl1577 Mean 88376 93260 82522 93236 93511 77636 94066
Sdev 235 641 2747 623 434
Median 112959 120691 119142 121863 121777

d2103 Mean 112894 120852 118834 121914 121794 112720 122534
Sdev 90 339 2017 317 196
Median 148429 160189 147283 161322 161540

pcb3038 Mean 148610 160203 146741 161336 161558 141872 162321
Sdev 1955 235 2349 411 401
Median 248404 262174 240835 264383 263047

fnl4461 Mean 248003 262090 240884 264460 263102 239569 265322
Sdev 1043 381 957 354 402
Median 367017 395132 315595 398131 396938

pla7397 Mean 369410 394809 317847 398464 397005 254937 401252
Sdev 4543 1117 36889 1434 1957
Median 665469 707624 647432 714405 711001

rl11849 Mean 664653 707727 646646 714188 711019 639965 715379
Sdev 4205 1067 3356 1050 2053
Median 748684 808425 693102 809100 807049

usa13509 Mean 748957 808104 695025 809986 807339 658211 817069
Sdev 2706 1546 26436 3293 1588
Median 818107 874648 803894 879175 880860

brd14051 Mean 817558 874722 801686 879741 880868 791052 885314
Sdev 4943 3487 5732 3055 2193
Median 884334 946065 871629 962704 968380

d15112 Mean 886474 947268 872601 962738 966935 857514 972207
Sdev 12604 5182 11641 6888 5027
Median 997307 1071275 882375 1082018 1076736

d18512 Mean 997293 1070819 900469 1082451 1077209 857514 1087677
Sdev 3009 1952 42711 2751 4929
Median 1721610 1895380 1717794 1912398 1913334

pla33810 Mean 1730589 1893163 1707087 1910419 1912406 1654707 1928935
Sdev 23663 15501 26741 7496 13099

Table A2: The median, the mean, and the standard deviation (StdDev) of the objectives values obtained over 10 runs of each of
MATLS, S5, CS2SA*, CoCoP, and CoCoL solvers on each CatB instance. Emboldened values are the largest median, the largest
mean, and the smallest standard deviation of the objective values over the five solvers. Moreover, the maximum and the minimum
of the objectives values obtained are over all 50 runs of all 5 solvers; these maximums and minimums are used in RDI computation
in Table 2.

CatB Metric MATLS S5 CS2SA* CoCoP CoCoL Min Max
Median 22357 21616 19209 22312 22443

eil76 Mean 22278 21669 19236 22290 22440 18421 22464
Sdev 330 247 581 35 7
Median 42303 45687 40585 45812 45812

kroA100 Mean 42478 45300 40059 45662 45492 39271 45812
Sdev 522 952 679 240 856
Median 61053 61241 51270 61703 61698

ch130 Mean 61023 61241 52823 61702 61712 50695 61842
Sdev 87 0 3369 1 82
Median 58000 60550 58090 60718 60920

u159 Mean 58105 60693 58090 60814 60899 57450 61067
Sdev 793 197 0 171 162
Median 108803 109925 112210 116455 116446

a280 Mean 109996 109938 112115 116453 116444 106969 116458
Sdev 2431 24 2817 8 13
Median 253938 252504 249741 259990 260393

u574 Mean 253870 252378 249049 260008 260481 245615 261154
Sdev 3025 387 2235 57 250
Median 300806 308549 306002 321128 319219

u724 Mean 300875 308106 306247 320751 319403 297562 321343
Sdev 2991 910 5463 645 753
Median 341668 344626 323717 369395 370866

dsj1000 Mean 342340 344559 313118 369270 371224 281196 372837
Sdev 5942 1667 17236 265 689
Median 564558 580186 569745 599321 598310

rl1304 Mean 565251 580406 568978 599535 598248 553759 602276
Sdev 8069 3257 7501 1496 853
Median 602111 612594 590353 627094 626674

fl1577 Mean 603575 611938 584300 627066 627032 545224 630291
Sdev 8700 6433 21683 690 1312
Median 848987 884576 879209 923371 923098

d2103 Mean 850689 886123 868850 923681 923201 800191 927992
Sdev 8676 9347 26974 1703 1975
Median 1171195 1179155 1172570 1201762 1199959

pcb3038 Mean 1170233 1178436 1170399 1201624 1200100 1118448 1203695
Sdev 6489 3664 20839 1444 2203
Median 1616550 1625875 1627208 1648718 1643725

fnl4461 Mean 1617028 1625227 1622874 1647646 1645435 1606609 1653828
Sdev 4283 2593 8776 2401 4972
Median 4322850 4325905 4156569 4475452 4445034

pla7397 Mean 4278065 4346919 4071181 4466713 4430468 3657856 4485629
Sdev 138799 50782 237986 20194 29484
Median 4610620 4613870 4631178 4786319 4732950

rl11849 Mean 4606189 4618037 4637653 4788987 4734139 4548692 4823625
Sdev 18154 19855 42376 29228 28800
Median 7827255 7938200 7944378 8226438 8142993

usa13509 Mean 7827089 7927507 7844064 8229873 8137433 7141090 8343799
Sdev 55110 34894 327270 72267 75961
Median 6470290 6538740 6641818 6759473 6768365

brd14051 Mean 6476988 6540131 6520074 6762582 6756279 5499906 6854612
Sdev 77957 64430 410024 42308 53386
Median 6922835 7091740 7564499 7710754 7732018

d15112 Mean 6962344 7119176 7510784 7701890 7723037 6792890 7942036
Sdev 137967 94229 241942 149233 43069
Median 7101430 7182725 7357957 7490813 7394360

d18512 Mean 7128864 7174375 7133843 7457973 7407453 5845239 7582022
Sdev 139510 54109 555368 67658 79192
Median 15350400 15588600 14344461 16230647 16034864

pla33810 Mean 15386770 15622400 14515200 16231654 16013497 13170032 16332634
Sdev 199854 114891 806290 58750 161777

Table A3: The median, the mean, and the standard deviation (StdDev) of the objectives values obtained over 10 runs of each of
MATLS, S5, CS2SA*, CoCoP, and CoCoL solvers on each CatC instance. Emboldened values are the largest median, the largest
mean, and the smallest standard deviation of the objective values over the five solvers. Moreover, the maximum and the minimum
of the objectives values obtained are over all 50 runs of all 5 solvers; these maximums and minimums are used in RDI computation
in Table 2.

CatC Metric MATLS S5 CS2SA* CoCoP CoCoL Min Max
Median 87997 87455 87577 87806 87629

eil76 Mean 87932 87392 86611 87668 87629 81940 88211
Sdev 298 634 1846 193 492
Median 155466 155582 149656 158777 158279

kroA100 Mean 155478 155801 151911 158758 158224 148491 158777
Sdev 22 693 3182 59 535
Median 206855 207142 197555 207159 207159

ch130 Mean 203149 207142 196913 207081 207313 194155 207671
Sdev 4929 0 1181 246 248
Median 243122 246472 246038 248508 248351

u159 Mean 243426 246419 246038 248508 248395 242201 249875
Sdev 758 158 4045 9 75
Median 426891 429018 425076 429138 429099

a280 Mean 426853 429015 424822 429137 429113 421778 429138
Sdev 1034 5 1747 2 19
Median 966046 966903 955741 969705 968371

u574 Mean 966064 967017 950906 969708 968225 916712 970343
Sdev 2437 691 13981 455 419
Median 1188545 1190005 1173360 1203516 1206366

u724 Mean 1189346 1190109 1175045 1202541 1205830 1163702 1209029
Sdev 4382 995 8920 2120 2282
Median 1477500 1479750 1424561 1495041 1492045

dsj1000 Mean 1474439 1479970 1413535 1494506 1491253 1352328 1496922
Sdev 8935 1403 37247 2103 2708
Median 2183330 2189320 2154384 2213935 2210598

rl1304 Mean 2187460 2190216 2155826 2213447 2210761 2118284 2214091
Sdev 11071 4980 19125 781 2306
Median 2458630 2471315 2412735 2485371 2483177

fl1577 Mean 2463556 2473376 2397668 2487396 2482978 2321699 2500736
Sdev 13175 12833 53022 6146 4040
Median 3392755 3430185 3366324 3496222 3482613

d2103 Mean 3401609 3429943 3387613 3496012 3482325 3362735 3501889
Sdev 21813 8662 32549 2766 12532
Median 4559385 4568970 4571545 4597719 4583180

pcb3038 Mean 4558555 4571752 4560311 4597236 4582078 4459818 4600973
Sdev 4161 5776 38211 3205 5396
Median 6544210 6546530 6545047 6572527 6568717

fnl4461 Mean 6547657 6545619 6541215 6572238 6567656 6482021 6575472
Sdev 8640 4487 23454 2840 3978
Median 13983950 14112500 13676547 14520941 14382473

pla7397 Mean 13934720 14129270 13604651 14480550 14368424 12669917 14572352
Sdev 186508 78387 544124 81468 66425
Median 18275600 18231100 18246266 18355212 18415752

rl11849 Mean 18289600 18228430 18237586 18381502 18419397 17967813 18569005
Sdev 34140 32019 129381 87469 69735
Median 25920700 25867750 26371355 26375964 26537543

usa13509 Mean 25877870 25890400 25814704 26404068 26524737 21710095 26728716
Sdev 196513 92477 1494909 104279 154910
Median 23868750 23808650 24000036 24196359 24073026

brd14051 Mean 23797310 23815520 23866512 24152244 24041815 23284712 24361366
Sdev 176543 114067 361304 137805 113208
Median 26004950 26254100 26907395 27424573 27461281

d15112 Mean 25972990 26275900 26975427 27462464 27451255 25760900 27665466
Sdev 113162 206275 307541 136052 176104
Median 27112750 27245850 27523202 27833906 27524914

d18512 Mean 27196570 27168630 27439923 27766028 27483840 26802200 27951166
Sdev 256922 196514 255881 171997 216132
Median 58146450 57576050 57120599 58689650 58418340

pla33810 Mean 58080700 57505880 56988987 58680600 58401815 55713691 58900443
Sdev 206467 259242 820900 155349 120691

Table A4: The median, mean, and standard deviation (StdDev) of execution times and objectives values obtained by 10 runs of
each of MEA2P and CoCoP solvers on each of the 8 small CatA instances. Emboldened values are the largest median, the largest
mean, and the smallest standard deviation of the execution times and the objective values over the two solvers. The maximum
and the minimum of objectives values are over all 20 runs of both solvers; these maximums and minimums are used in RDI
computation in Table 4.

CatA Exec Time (Sec.) Objective Value
Instance Metric MEA2P CoCoP MEA2P CoCoP Min Max

Median 45 25 3992 4103
eil76 Mean 45 27 4017 4061 3952 4103

StdDev 2 5 56 68
Median 94 45 4976 4628

kroA100 Mean 94 49 4956 4628 4628 4976
StdDev 2 8 55 0
Median 176 92 9638 9564

ch130 Mean 178 101 9635 9547 9386 9682
StdDev 8 20 42 57
Median 429 62 8956 8763

u159 Mean 431 69 8977 8763 8763 9064
StdDev 17 13 63 0
Median 1901 88 18937 18487

a280 Mean 1909 99 18961 18481 18411 19422
StdDev 51 21 330 49
Median 14191 565 28735 27359

u574 Mean 16174 638 28560 27391 27152 29457
StdDev 3470 126 672 121
Median 23401 530 50128 51363

u724 Mean 23544 553 49866 51366 49067 51647
StdDev 1192 73 531 202
Median 19984 2106 134821 144219

dsj1000 Mean 21384 2360 134750 144219 133724 144219
StdDev 2701 397 646 0

Table A5: The median, mean, and standard deviation (StdDev) of execution times and objectives values obtained by 10 runs of
each of MEA2P and CoCoP solvers on each of the 8 small CatB instances. Emboldened values are the largest median, the largest
mean, and the smallest standard deviation of the execution times and the objective values over the two solvers. The maximum
and the minimum of objectives values are over all 20 runs of both solvers; these maximums and minimums are used in RDI
computation in Table 4.

CatB Exec Time (Sec.) Objective Value
Instance Metric MEA2P CoCoP MEA2P CoCoP Min Max

Median 132 29 23278 22177
eil76 Mean 135 29 23228 22124 21581 23278

StdDev 7 1 158 201
Median 298 51 46633 45326

kroA100 Mean 299 51 46605 44380 42095 46633
StdDev 6 2 46 1500
Median 590 95 62496 61290

ch130 Mean 591 96 62403 61391 61184 62496
StdDev 28 3 150 209
Median 1030 77 61882 60656

u159 Mean 1007 77 61820 60714 60626 62157
StdDev 54 2 417 143
Median 4591 112 116120 116379

a280 Mean 4596 113 116084 116377 115145 116810
StdDev 145 5 540 52
Median 45807 618 263054 259990

u574 Mean 46311 622 263011 260025 259874 267719
StdDev 2373 20 2384 111
Median 100049 626 320644 321323

u724 Mean 101820 622 320703 321476 316293 326151
StdDev 13357 15 2692 1274
Median 293615 2398 371169 370511

dsj1000 Mean 295897 2657 372407 370392 364690 383577
StdDev 46304 440 6899 935

Table A6: The median, mean, and standard deviation (StdDev) of execution times and objectives values obtained by 10 runs of
each of MEA2P and CoCoP solvers on each of the 8 small CatC instances. Emboldened values are the largest median, the largest
mean, and the smallest standard deviation of the execution times and the objective values over the two solvers. The maximum
and the minimum of objectives values are over all 20 runs of both solvers; these maximums and minimums are used in RDI
computation in Table 4.

CatC Exec Time (Sec.) Objective Value
Instance Metric MEA2P CoCoP MEA2P CoCoP Min Max

Median 282 40 88386 87161
eil76 Mean 281 40 88386 87054 85783 88386

StdDev 7 1 0 696
Median 599 65 159135 155585

kroA100 Mean 601 65 159135 155603 155585 159135
StdDev 28 1 0 23
Median 1197 115 207907 207159

ch130 Mean 1218 123 207569 206902 206242 207907
StdDev 87 24 556 367
Median 1870 101 252667 248498

u159 Mean 1867 101 252667 248352 248133 252667
StdDev 44 1 0 188
Median 6946 150 427716 429135

a280 Mean 7174 159 427369 429135 422492 429138
StdDev 490 29 2124 3
Median 88122 712 966125 970049

u574 Mean 90718 754 964333 970025 953724 976021
StdDev 17801 134 7082 486
Median 167109 773 1198353 1205500

u724 Mean 180938 778 1197832 1205628 1185219 1211213
StdDev 44145 30 6418 1086
Median 537341 2557 1495453 1499405

dsj1000 Mean 541756 2645 1493313 1500609 1474506 1506740
StdDev 118628 332 8938 4849

References
[1] F. Ali and M. Mohamedkhair. Hyper-heuristic approaches for the travelling thief problem. In International Conference on Computer,

Control, Electrical, and Electronics Engineering (ICCCEEE), pages 1–6. IEEE, 2020.

[2] D. Applegate, W. Cook, and A. Rohe. Chained Lin-Kernighan for large traveling salesman problems. INFORMS Journal on Computing,
15(1):82–92, 2003.

[3] E. Balas. The prize collecting traveling salesman problem and its applications. In The traveling salesman problem and its variations, pages
663–695. Springer, 2007.

[4] B. Bontoux, C. Artigues, and D. Feillet. A memetic algorithm with a large neighborhood crossover operator for the generalized traveling
salesman problem. Computers & Operations Research, 37(11):1844–1852, 2010.

[5] M. R. Bonyadi, Z. Michalewicz, and L. Barone. The travelling thief problem: The first step in the transition from theoretical problems to
realistic problems. In IEEE Congress on Evolutionary Computation (CEC), pages 1037–1044, 2013.

[6] M. R. Bonyadi, Z. Michalewicz, M. R. Przybylek, and A. Wierzbicki. Socially inspired algorithms for the travelling thief problem. In
Annual Conference on Genetic and Evolutionary Computation, pages 421–428, 2014.

[7] M. R. Bonyadi, Z. Michalewicz, M. Wagner, and F. Neumann. Evolutionary computation for multicomponent problems: opportunities and
future directions. In Optimization in Industry, pages 13–30. Springer, 2019.

[8] G. A. Croes. A method for solving traveling-salesman problems. Operations Research, 6(6):791–812, 1958.

[9] R. R. Curtin, M. Edel, R. G. Prabhu, S. Basak, Z. Lou, and C. Sanderson. The ensmallen library for flexible numerical optimization.
Journal of Machine Learning Research, 22(166):1–6, 2021.

[10] R. R. Curtin, M. Edel, O. Shrit, S. Agrawal, S. Basak, J. J. Balamuta, R. Birmingham, K. Dutt, D. Eddelbuettel, R. Garg, S. Jaiswal,
A. Kaushik, S. Kim, A. Mukherjee, N. G. Sai, N. Sharma, Y. S. Parihar, R. Swain, and C. Sanderson. mlpack 4: a fast, header-only C++
machine learning library. Journal of Open Source Software, 8(82):5026, 2023.

[11] B. Delaunay. Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 7:793–800, 1934.

[12] G. Dueck. New optimization heuristics: The great deluge algorithm and the record-to-record travel. Journal of Computational physics,
104(1):86–92, 1993.

[13] M. El Yafrani and B. Ahiod. Population-based vs. single-solution heuristics for the travelling thief problem. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 317–324. ACM, 2016.

[14] M. El Yafrani and B. Ahiod. A local search based approach for solving the Travelling Thief Problem: The pros and cons. Applied Soft
Computing, 52:795–804, 2017.

[15] M. El Yafrani and B. Ahiod. Efficiently solving the Traveling Thief Problem using hill climbing and simulated annealing. Information
Sciences, 432:231–244, 2018.

[16] M. El Yafrani, M. Martins, M. Wagner, B. Ahiod, M. Delgado, and R. Lüders. A hyperheuristic approach based on low-level heuristics for
the travelling thief problem. Genetic Programming and Evolvable Machines, 19(1-2):121–150, 2018.

[17] H. Faulkner, S. Polyakovskiy, T. Schultz, and M. Wagner. Approximate approaches to the traveling thief problem. In Annual Conference on
Genetic and Evolutionary Computation, pages 385–392, 2015.

[18] G. Gutin and A. P. Punnen. The Traveling Salesman Problem and Its Variations. Springer, 2006.

[19] M. Hannan, R. Begum, A. Q. Al-Shetwi, P. Ker, M. Al Mamun, A. Hussain, H. Basri, and T. Mahlia. Waste collection route optimisation
model for linking cost saving and emission reduction to achieve sustainable development goals. Sustainable Cities and Society, 62:102393,
2020.

[20] H. Kellerer, U. Pferschy, and D. Pisinger. Introduction to NP-completeness of knapsack problems. In Knapsack Problems, pages 483–493.
Springer, 01 2004.

[21] J.-U. Kim and Y.-D. Kim. Simulated annealing and genetic algorithms for scheduling products with multi-level product structure. Computers
& Operations Research, 23(9):857–868, 1996.

[22] G. Laporte and S. Martello. The selective travelling salesman problem. Discrete applied mathematics, 26(2-3):193–207, 1990.

[23] A. Maity and S. Das. Efficient hybrid local search heuristics for solving the travelling thief problem. Applied Soft Computing, 93:106284,
2020.

[24] M. S. Martins, M. El Yafrani, M. R. Delgado, M. Wagner, B. Ahiod, and R. Lüders. HSEDA: A heuristic selection approach based
on estimation of distribution algorithm for the travelling thief problem. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 361–368. ACM, 2017.

[25] Y. Mei, X. Li, F. Salim, and X. Yao. Heuristic evolution with genetic programming for traveling thief problem. In IEEE Congress on
Evolutionary Computation (CEC), pages 2753–2760, 2015.

[26] Y. Mei, X. Li, and X. Yao. Improving efficiency of heuristics for the large scale traveling thief problem. In Simulated Evolution and
Learning, Lecture Notes in Computer Science (LNCS), Vol. 8886, pages 631–643, 2014.

[27] Y. Mei, X. Li, and X. Yao. On investigation of interdependence between sub-problems of the travelling thief problem. Soft Computing,
20(1):157–172, 2016.

[28] Z. Michalewicz. Quo vadis, evolutionary computation? In IEEE World Congress on Computational Intelligence, pages 98–121. Springer,
2012.

[29] Y. Nagata. New EAX crossover for large TSP instances. In Parallel Problem Solving from Nature - PPSN IX, pages 372–381. Springer,
2006.

[30] M. Namazi, M. A. Newton, A. Sattar, and C. Sanderson. A profit guided coordination heuristic for travelling thief problems. In Proceedings
of the International Symposium on Combinatorial Search, volume 10, pages 140–144, 2019.

[31] M. Namazi, C. Sanderson, M. A. Newton, and A. Sattar. Surrogate assisted optimisation for travelling thief problems. In Proceedings of the
International Symposium on Combinatorial Search, volume 11, pages 111–115, 2020.

[32] S. U. Ngueveu, C. Prins, and R. W. Calvo. An effective memetic algorithm for the cumulative capacitated vehicle routing problem.
Computers & Operations Research, 37(11):1877–1885, 2010.

[33] A. Nikfarjam, A. Neumann, and F. Neumann. On the use of quality diversity algorithms for the traveling thief problem. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 260–268, 2022.

[34] S. Polyakovskiy, M. R. Bonyadi, M. Wagner, Z. Michalewicz, and F. Neumann. A comprehensive benchmark set and heuristics for the
traveling thief problem. In Annual Conference on Genetic and Evolutionary Computation, pages 477–484, 2014.

[35] S. Polyakovskiy and F. Neumann. The packing while traveling problem. European Journal of Operational Research, 258(2):424–439, 2017.

[36] M. A. Potter and K. A. De Jong. A cooperative coevolutionary approach to function optimization. In International Conference on Parallel
Problem Solving from Nature, pages 249–257. Springer, 1994.

[37] G. Reinelt. TSPLIB-A traveling salesman problem library. ORSA Journal on Computing, 3(4):376–384, 1991.

[38] R. Sachdeva, F. Neumann, and M. Wagner. The dynamic travelling thief problem: Benchmarks and performance of evolutionary algorithms.
In International Conference on Neural Information Processing, pages 220–228. Springer, 2020.

[39] T. Stützle and H. H. Hoos. MAX-MIN ant system. Future Generation Computer Systems, 16(8):889–914, 2000.

[40] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden. The orienteering problem: A survey. European Journal of Operational Research,
209(1):1–10, 2011.

[41] T. Vidal, N. Maculan, L. S. Ochi, and P. H. Vaz Penna. Large neighborhoods with implicit customer selection for vehicle routing problems
with profits. Transportation Science, 50(2):720–734, 2016.

[42] M. Wagner. Stealing items more efficiently with ants: a swarm intelligence approach to the travelling thief problem. In Swarm Intelligence,
Lecture Notes in Computer Science (LNCS), Vol. 9882, pages 273–281, 2016.

[43] M. Wagner, M. Lindauer, M. Mısır, S. Nallaperuma, and F. Hutter. A case study of algorithm selection for the traveling thief problem.
Journal of Heuristics, 24(3):295–320, 2018.

[44] J. Wu, M. Wagner, S. Polyakovskiy, and F. Neumann. Exact approaches for the travelling thief problem. In Asia-Pacific Conference on
Simulated Evolution and Learning, pages 110–121. Springer, 2017.

[45] R. H. Wuĳts and D. Thierens. Investigation of the traveling thief problem. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 329–337, 2019.

[46] Z. Zhang, L. Yang, P. Kang, X. Jia, and W. Zhang. Solving the traveling thief problem based on item selection weight and reverse-order
allocation. IEEE Access, 9:54056–54066, 2021.

	Introduction
	Preliminaries
	Travelling Salesman Problem
	Knapsack Problems
	Travelling Thief Problems

	Related Work
	Constructive Methods
	Fixed-Tour Methods
	Cooperative Methods
	Full-Encoding Methods
	Hyper-Heuristic Methods

	TTP Search Framework
	Function TTPS
	Function TSPS
	Function KPS
	Baseline Solver Version

	Proposed Coordination Approaches
	Observing Coordination Effect after 2OPT
	Local Search Based Coordination
	Characterising 2OPT Coordination Behaviour
	Human Designed Intuitive Coordination
	Coordination Based Item Selection
	Machine Learning Based Coordination

	Experiments
	Benchamrk TTP Instances
	Settings
	Comparison of Proposed Solver Versions
	Overall Effectiveness of MBFS Approach
	Overall Effectiveness of PGCH Approach
	Learning Details of LGCH Approach
	Overall Comparison of PGCH, SGCH, and LGCH

	Further Analysis of PGCH and LGCH over NOCH
	Comparison with Existing TTP Solvers
	Comparison of MBFS with Simulated Annealing Search
	Comparison with MATLS, S5, and CS2SA* Solvers
	Comparison with a Recent Solver MEA2P
	Best Objective Values Obtained

	Conclusion

