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Abstract

For over 15 years, the mlpack machine learning library has served as a “swiss army knife” for C++-based
machine learning. Its efficient implementations of common and cutting-edge machine learning algorithms
have been used in a wide variety of scientific and industrial applications. This paper overviews mlpack 4,
a significant upgrade over its predecessor. The library has been significantly refactored and redesigned to
facilitate an easier prototyping-to-deployment pipeline, including bindings to other languages (Python, Julia,
R, Go, and the command line) that allow prototyping to be seamlessly performed in environments other than
C++. mlpack is open-source software, distributed under the permissive 3-clause BSD license; it can be obtained
at https://mlpack.org

Background

The use of machine learning has become ubiquitous in almost every scientific discipline and countless
commercial applications [3, 14]. There is one important commonality to virtually all of these applications:
machine learning is often computationally intensive, due to the large number of parameters and large amounts
of training data. This was the main motivator for the original development of mlpack in the C++ language,
which allows for efficient close-to-the-metal implementations [5, 6].

But speed is not everything: development and deployment of applications that use machine learning can also
be significantly hampered if the overall process is too difficult or unwieldy [17, 21]. Furthermore, deployment
environments often have computational or engineering constraints that make a full-stack Python solution
infeasible [12]. As such, it is important that lightweight and easy-to-deploy machine learning solutions are
available. This has motivated our refactoring and redesign of mlpack 4: we pair efficient implementations
with easy and lightweight deployment, making mlpack suitable for a wide range of deployment environments.
A more complete set of motivations can be found in the mlpack vision document [19].

mlpack is a general-purpose machine learning library, targeting both academic and commercial use; for
instance, data scientists who need efficiency and ease of deployment, or, e.g., by researchers who need
flexibility and extensibility. While there are other machine learning libraries intended to be used from C++,
many, such as FAISS [13] and FLANN [20], are limited to a few specific algorithms, instead of a full range
of machine learning algorithms, like mlpack provides. dlib-ml [15], on the other hand, does provide a broad
toolkit of machine learning algorithms, but its extensibility is somewhat limited as it does not use policy-based
design [1] to provide arbitrary user-defined behavior, and the range of machine learning algorithms provided
is smaller than mlpack’s.

Functionality

The library contains a wide variety of machine learning algorithms, some of which are new to mlpack 4. The
list of algorithms includes linear regression, logistic regression, random forests, furthest-neighbor search [8],
accelerated k-means variants [4], kernel density estimation [18], and fast max-kernel search [9]. There is also a
module for deep neural networks, which has implementations of numerous layer types, activation functions,
and reinforcement learning applications. Details of the available functionality are provided in the online
mlpack documentation (https://www.mlpack.org/docs.html). The efficiency of these implementations has
been shown in various works [5, 11] using mlpack’s benchmarking system [10].
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The algorithms are available via automatically-generated bindings to Python, R, Go, Julia, and the command
line. Each of these bindings has a unified interface across the languages; for example, a model trained in Python
can be used from Julia or C++ (or any other language with mlpack bindings). The bindings are available in
each language’s package manager, as well as system-level package managers such as apt and dnf. Furthermore,
ready-to-use Docker containers with the environment fully configured are available on DockerHub, and an
interactive C++ notebook interface via the xeus-cling project (https://github.com/QuantStack/xeus-cling) is
available on BinderHub.

Once a user has developed a machine learning workflow in the language of their choice, deployment is
straightforward. The mlpack library is now header-only, and directly depends only on three libraries:
Armadillo [24], ensmallen [7], and cereal (https://github.com/USCILab/cereal). When using C++, the only
linking requirement is to an efficient implementation of BLAS and LAPACK (required via Armadillo). This
significantly eases deployment; a standalone C++ application with only a BLAS/LAPACK dependency
is easily deployable to many environments, including standard Linux-based Docker containers, Windows
environments, and resource-constrained embedded environments. To this end, mlpack’s build system now
also contains a number of tools for cross-compilation support, including the ability to easily statically link
compiled programs (important for some deployment environments).

Major Changes

Below we detail a few of the major changes present in mlpack 4. For a complete and exhaustive list (including
numerous bug fixes and new techniques), the HISTORY.md file (distributed with mlpack) can be consulted.

• Removed dependencies. In accordance with the vision document [19], the majority of the refactoring
and redesign work focused on reducing dependencies and compilation overhead. This has motivated
the replacement of the Boost C++ libraries (https://www.boost.org), upon which mlpack previously
depended, with lightweight alternatives including cereal (https://github.com/USCILab/cereal) for
serialization. The entire neural network module was refactored to avoid the use of Boost (amounting
to an almost complete rewrite). This effort was rewarded handsomely: with mlpack 3, a simple program
would often require several gigabytes of memory just for compilation. After refactoring and removing
dependencies, compilation generally requires just a few hundred megabytes of memory, and is often an
order of magnitude faster.

• Interactive notebook environments. mlpack can be used in a Jupyter notebook environment [16] via
the xeus-cling project (https://github.com/QuantStack/xeus-cling). This is demonstrated interactively
on the mlpack homepage (https://www.mlpack.org). Examples of C++ notebooks can be found in the
mlpack examples repository (https://github.com/mlpack/examples), and these can easily be run on
BinderHub.

• New bindings and enhanced availability. Support for the Julia [2], Go [22], and R languages [23, 25]
has been added via mlpack’s automatic binding system. These bindings can be used by installing
mlpack from the language’s package manager (Pkg.jl, go get, install.packages(’mlpack’)). Furthermore, since
mlpack’s reduced dependency footprint has significantly simplified the deployment process, mlpack’s
Python dependencies are now available for numerous architectures both on PyPI and in conda-forge.

• Cross-compilation support and build system improvements. mlpack’s build configuration now
supports easy cross-compilation, for instance via toolchains such as buildroot (https://buildroot.org).
By specifying a few flags, a user may produce a working mlpack setup for a variety of embedded
systems. This required the implementation of a dependency auto-downloader, which is capable of
downloading OpenBLAS (https://github.com/xianyi/OpenBLAS) and compiling (if necessary) for the
target architecture. The auto-downloader can also be enabled and used for any situation, thus easing
installation and deployment.
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