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ABSTRACT

In this paper we evaluate the effectiveness of two likelihood

normalization techniques, the Background Model Set (BMS)

and the Universal Background Model (UBM), for improving per-

formance and robustness of four face authentication systems uti-

lizing a Gaussian Mixture Model (GMM) classifier. The systems

differ in the feature extraction method used: eigenfaces (PCA),

2-D DCT, 2-D Gabor wavelets and DCT-mod2. Experiments on

the VidTIMIT database, using test images corrupted either by an

illumination change or compression artefacts, suggest that likeli-

hood normalization has little effect when using PCA derived fea-

tures, while providing significant performance improvements when

using the remaining features.

1. INTRODUCTION

A face authentication system verifies the claimed identity based on

images (or a video sequence) of the claimant’s face. Such systems

have forensic and security (ie. access control) applications.

It seems all current face-based authentication systems,

eg. [1, 2, 3, 4], effectively follow a thresholding approach to make

the final accept or reject decision. The result of comparison of

the claimant’s features (X) with a model belonging to the person

whose identity is being claimed (�
C

) is a matching score or a like-

lihood. Let us refer to this result as p(Xj�
C

). Given a threshold t,

the claim is accepted when:

p(Xj�

C

) � t (1)

and rejected otherwise. However, if there is a mismatch between

training and testing conditions, the claim may be automatically re-

jected due to a low likelihood. The mismatch can occur due to,

for example, different cameras being used, an illumination change

(important in security applications) or compression artefacts (im-

portant in forensic work dealing with compressed video).

In speech-based verification systems it has been found that use

of normalized likelihoods improves performance as well as robust-

ness [5]. By reformulating Eqn. (1) in the Bayesian framework, the

claim is accepted when:

p(Xj�

C

)

p(Xj�

C

)

� t (2)

where p(Xj�
C

) is the result of the claimant’s features being com-

pared to an anti-client model (�
C

), ie. the likelihood of the claimant

being an impostor. If the testing condition causes p(Xj�
C

) to de-

crease, then it is reasonable to suppose that p(Xj�
C

) will also

decrease - thus the ratio of the likelihoods may remain relatively

unaffected. In effect, the threshold is automatically tuned for each

person to account for environmental conditions.

There are two popular approaches for finding the impostor

likelihood:

1. Background Model Set (BMS) approach [6].

2. Universal Background Model (UBM) approach [7].

The most important difference between the two techniques is that

in the latter approach the impostor likelihood is client independent.

We will evaluate the effectiveness of the above approaches for

improving the performance and robustness of four face authenti-

cation systems in a common framework - ie. classifier, database,

controlled image corruption via an illumination change and com-

pression artefacts. The four systems differ in the feature extrac-

tion method used: eigenfaces (PCA) [8], 2-D DCT [9], 2-D Gabor

wavelets [10] and DCT-mod2 [11].

The rest of the paper is organized as follows. In Section 2

we briefly review the feature extraction methods. In Section 3,

we describe the Gaussian Mixture Model (GMM) based classifier

which shall be used as the basis for experiments. In Section 4

we describe the two normalization approaches suited to the GMM

classifier. Section 5 is devoted to experiments. The results are

discussed and conclusions drawn in Section 6.

2. FEATURE EXTRACTION

In the eigenfaces approach [8], Principal Component Analysis

(PCA) is used to make low dimensionality representations of face

images. A given face image is represented by a matrix containing

grey level pixel values. The matrix is then converted to a face vec-

tor, ~f , by concatenating all the columns. A D-dimensional feature

vector, ~x, is then obtained by:

~x = U

T

(

~

f �

~

f

�

) (3)

where U contains D eigenvectors (with largest corresponding

eigenvalues) of the training data covariance matrix, and ~

f

�

is the

mean of training face vectors. Typically, D = 40. In this work we

shall use the terms eigenfaces and PCA interchangeably.

In 2-D DCT feature extraction, a given face image is ana-

lyzed on a block by block basis. Each block is decomposed in

terms of 2-D DCT basis functions [9], resulting in a set of coeffi-

cients. For each block, the first M coefficients are used to form an

M -dimensional feature vector (typically, M = 15).

The DCT-mod2 approach is similar to 2-D DCT. The main

difference is that the feature vector for each block also contains

polynomial coefficients based on a subset of 2-D DCT coefficients

extracted from spatially neighbouring blocks [11]. The dimension-

ality of a DCT-mod2 feature vector is M + 3.



In 2-D Gabor wavelet feature extraction, a coarse rectangu-

lar grid is placed over a given image. At each node of the grid,

the image is analyzed by a set of biologically inspired 2-D Ga-

bor wavelets [10], differing in orientation and scale. Responses of

the wavelets are then used to form a G-dimensional feature vector

(typically, G = 18).

It must be emphasized that in the eigenfaces approach, one

feature vector represents the entire face, while in the other meth-

ods, one feature vector represents only a small portion of the face.

3. GMM BASED CLASSIFIER

Given a claim for person C’s identity and a set of feature vectors

X = f~x

i

g

N

V

i=1

supporting the claim (which may come from a se-

quence of images), the average log likelihood of the claimant being

the true claimant is calculated using:

L(Xj�

C

) =

1

N

V

N

V

X

i=1

log p(~x

i

j�

C

) (4)

where p(~xj�) =

N

M

X

j=1

m

j

N (~x; ~�

j

;�

j

) (5)

and � = fm

j

; ~�

j

;�

j

g

N

M

j=1

(6)

Here �
C

is the model for personC. N
M

is the number of mixtures,

m

j

is the weight for mixture j (with constraint
P

N

M

j=1

m

j

= 1),

and N (~x; ~�;�) is a multi-variate Gaussian function with mean ~�

and diagonal covariance matrix �.

Given the average log likelihood of the claimant being an im-

postor, L(Xj�
C

), an opinion on the claim is found using:

�(X) = L(Xj�

C

)� L(Xj�

C

) (7)

The verification decision is reached as follows: given a thresh-

old t, the claim is accepted when �(X) � t and rejected when

�(X) < t.

3.1. Model Construction

Given a set of training vectors (which may come from a sequence

of images), an N

M

-mixture GMM for each client can be con-

structed two ways:

1. Using a k-means clustering algorithm followed by 10

iterations of the Expectation Maximization (EM) algorithm

[12]. This approach is taken when using the BMS for nor-

malization (Section 4.1).

2. Adapting a previously constructed Universal Background

Model, �
UBM

, using a form of maximum a posteriori (MAP)

adaptation [7]. This is done when using the UBM approach

for normalization (Section 4.2).

4. NORMALIZATION APPROACHES

4.1. Background Model Set (BMS)

In this approach, the average log likelihood that the claim for per-

son C’s identity is from an impostor is calculated using a set of

background models, B = f�

b

g

N

B

b=1

:

L(Xj�

C

) = log

"

1

N

B

N

B

X

b=1

expL(Xj�

b

)

#

(8)

The set of background models for each client is selected from the

pool of client models, as follows. Using training data, pair-wise

distances between each client model are found. For models �
D

and �

E

with corresponding training feature vector sets X
D

and

X

E

(which were used during the construction of the models), the

distance is defined as:

d(�

D

; �

E

) = [L(X

D

j�

D

)� L(X

D

j�

E

)℄

+ [L(X

E

j�

E

)� L(X

E

j�

D

)℄ (9)

The above symmetric distance attempts to measure how similar (or

close) the models �
D

and �
E

are. The background model set con-

tains models which are the closest to, as well as the farthest from,

the client model. While it may intuitively seem that only the close

models are required (which represent the expected impostors), this

would leave the system vulnerable to impostors which are very dif-

ferent from the client. This is demonstrated by inspecting Eqn. (7),

where both terms would contain similar values, leading to an un-

reliable opinion on the claim.

For a given client model �
C

, N
�

closest models (N
�

� N

B

)

are placed in set �. Similarly, N
	

farthest models (N
	

� N

B

)

are placed in set 	. Maximally spread models from the � set are

moved to set B

lose

using the following procedure:

1. Move the closest model from � to B

lose

.

2. Move �
i

from � to B

lose

, where �
i

is found using:

�

i

= arg max

�

j

2�

2

4

1

N

B


lose

X

�

b

2B


lose

d(�

b

; �

j

)

d(�

C

; �

j

)

3

5 (10)

where N
B


lose

is the cardinality of B

lose

.

3. Repeat step (2) until N
B


lose

=

N

B

2

.

Next, maximally spread models from the 	 set are moved to set

B

far

using the following procedure:

1. Move the farthest model from 	 to B
far

.

2. Move �
i

from 	 to B
far

, where �
i

is found using:

�

i

= arg max

�

j

2	

2

4

1

N

B

far

X

�

b

2B

far

d(�

b

; �

j

) d(�

C

; �

j

)

3

5

(11)

where N
B

far

is the cardinality of B
far

.

3. Repeat step (2) until N
B

far

=

N

B

2

.

Finally, B = B


lose

[ B

far

. The above procedures for selecting

maximally spread models are required to reduce redundancy in the

B set [6].

4.2. Universal Background Model (UBM)

In this approach, pooled training data from all clients is utilized to

construct a Universal Background Model (�
UBM

) using a k-means

clustering algorithm followed by 10 iterations of the EM algo-

rithm. The average log likelihood that the claim for person C’s

identity is from an impostor is found using:

L(Xj�

C

) = L(Xj�

UBM

) (12)



Moreover, instead of constructing the client models directly

from training data, they are generated by adapting �

UBM

, as fol-

lows. Given a set of training feature vectors for a specific client,

X = f~x

i

g

N

V

i=1

, and UBM parameters, f _m

k

;

_

~�

k

;

_

�

k

g

N

M

k=1

, estimated

weights (m̂
k

), means (^~�
k

), and covariances (^�
k

) are first found

using (for k = 1; :::; N

M

):

l

k;i

=

m

k

N (~x

i

;

_

~�

k

;

_

�

k

)

P

N

M

n=1

_m

n

N (~x

i

;

_

~�

n

;

_

�

n

)

for i = 1; :::; N

V

(13)

L

k

=

N

V

X

i=1

l

k;i

(14)

m̂

k

=

L

k

N

V

(15)

^

~�

k

=

1

L

k

N

V

X

i=1

~x

i

l

k;i

(16)

^

�

k

=

1

L

k

"

N

V

X

i=1

~x

i

~x

T

i

l

k;i

#

�

^

~�

k

^

~�

T

k

(17)

The final parameters, fm
k

; ~�

k

;�

k

g

N

M

k=1

, are found by adapting

the UBM parameters as follows:

m

k

= [�m̂

k

+ (1� �) _m

k

℄ 
 (18)

~�

k

= �

^

~�

k

+ (1� �)

_

~�

k

(19)

�

k

=

h

�

�

^

�

k

+

^

~�

k

^

~�

T

k

�

+ (1� �)

�

_

�

k

+

_

~�

k

_

~�

T

k

)

�i

�~�

k

~�

T

k

(20)

where 
 is a scale factor to make sure all mixture weights sum

to 1. � =

L

k

L

k

+r

is a data-dependent adaptation coefficient where

r is a fixed relevance factor (typically r = 16, Ref.[7]). It must

be noted that UBM mixture components will only be adapted if

there is sufficient correspondence with client training data. Thus

to prevent the final client models not being specific enough, the

UBM must adequately represent the general client population.

5. EXPERIMENTS AND RESULTS

5.1. VidTIMIT Audio-Visual Database

The VidTIMIT database [11], created by the authors, is comprised

of video and corresponding audio recordings of 43 people (19

female and 24 male), reciting short sentences. It was recorded

in 3 sessions, with a mean delay of 7 days between Session 1

and 2, and 6 days between Session 2 and 3. The mean dura-

tion of each sentence is 4.25 seconds, or approximately 106 video

frames. For more information on the database, please see [11] or

http://spl.me.gu.edu.au/vidtimit/

5.2. Experiment Setup

Before feature extraction can occur, the face must first be

located [13]. Furthermore, to account for varying distances to the

camera, a geometrical normalization must be performed. We treat

the problem of face location and size normalization as separate

from feature extraction.

To find the face, we use template matching with several pro-

totype faces of varying dimensions. Using the distance between

the eyes as a size measure, an affine transformation is used [9]

Fig. 1. Example face windows; left: clean; middle: corrupted
with illumination change; right: corrupted with compression artefacts
(PSNR=31.7 dB)

to adjust the size of the image, resulting in the distance between

the eyes to be the same for each person. Finally a 56 � 64 pixel

face window, w(y; x), containing the eyes and the nose (the most

invariant face area to changes in the expression and hair style) is

extracted from the image.

For PCA, the dimensionality of the face window is reduced

to 40 (choice based on the work by Samaria [14] and Belhumeur

[15]). For 2-D DCT and DCT-mod2 methods, each block is 8� 8

pixels. Moreover, each block overlaps with horizontally and ver-

tically adjacent blocks by 50%. The dimensionality of 2-D DCT

and DCT-mod2 feature vectors is 15 and 18, respectively. For Ga-

bor features, we follow Duc [2] where the dimensionality of the

Gabor feature vectors is 18. The location of the wavelet centers

was chosen to be as close as possible to the centers of the blocks

used in DCT-mod2 feature extraction.

To reduce the computational burden during modeling and test-

ing, every second video frame was used. For each feature ex-

traction method, 8 mixture client models (GMMs) were generated

from features extracted from face windows in Session 1.

For experiments involving an illumination change, the method

described in [11] (using Æ = 80) was utilized to introduce an ar-

tificial illumination change to face windows extracted from Ses-

sions 2 and 3.

For experiments involving compression artefacts, face win-

dows extracted from Sessions 2 and 3 were processed by a JPEG

codec [16], resulting in an average PSNR of 31.13 dB. Example

face windows are shown in Fig. 1.

To find the performance, Sessions 2 and 3 were used for ob-

taining example opinions of known impostor and true claims. Four

utterances, each from 8 fixed persons (4 male and 4 female), were

used for simulating impostor accesses against the remaining 35

persons. For each of the remaining 35 persons, their four utter-

ances were used separately as true claims. 10 background models

were selected from the 35 client models (N
�

= N

	

= 10). The

impostor utterances were not used during the generation of �
UBM

.

When deriving client models from �

UBM

, only the weights and

means were adapted - preliminary experiments showed that adapt-

ing the covariance matrices resulted in poorer performance.

For each experimental configuration, there were 1120 impos-

tor and 140 true claims. The (person independent) decision thresh-

old was then set so the a posteriori performance is as close as pos-

sible to Equal Error Rate (EER) (ie. where the False Acceptance

Rate is equal to the False Rejection Rate). In all experiments, clean

and corrupted face windows were used.

In the first experiment, EER performance of all face authenti-

cation systems was found without normalization (L(Xj�
C

) = 0).

Results are shown in Fig. 2.

In the second experiment, the impostor likelihood was calcu-

lated using client specific BMS. All models were constructed di-

rectly from the training data. Results are shown in Fig. 3.

In the final experiment, the impostor likelihood was calculated

using the UBM approach and the client models were constructed

by adapting �
UBM

. Results are shown in Fig. 4.



Fig. 2. EER performance without normalization

Fig. 3. EER performance using BMS normalization

Fig. 4. EER performance using UBM normalization

6. DISCUSSION AND CONCLUSIONS

When using PCA derived features, the BMS based normalization

has very little effect on the performance. This is in contrast to the

UBM based normalization, where it appears that there are signif-

icant performance gains when using clean and corrupted images

(eg. when using illumination corrupted images, the EER is re-

duced from 39.29% to 27.73%).

Recall that data from all clients is used to find �
UBM

. In the

UBM approach, client models are created by adapting �
UBM

(via

MAP) using client specific data. This is in contrast to directly com-

puting the client models using the EM algorithm, where only client

specific data is used. Effectively there is approximately 30 times

more data used during MAP based training than in direct EM based

training. Thus the apparent performance improvement when using

the UBM based normalization can be attributed to MAP training

of the client models rather than the process of likelihood normal-

ization. Further experiments (not reported here) support this asser-

tion.

The rest of the discussion concerns 2-D DCT, 2-D Gabor and

DCT-mod2 features. When using these features with the GMM

classifier, the spatial relation between major face features (eg. eyes

and nose) is lost. While this inherently allows a degree of robust-

ness to image translation, it results in poor performance when com-

pared to the PCA/GMM combination. Thus in these cases, use of

likelihood normalization is important in order to obtain good per-

formance. The gains are quite staggering - eg. for DCT-mod2

features, the EER drops from 39.2% to 2.05% when using clean

images and the BMS normalization approach. It can be observed

that the BMS approach generally provides the most performance

gain. The UBM approach is only better for two cases: 2-D DCT

and 2-D Gabor features with face windows corrupted with the il-

lumination change.

These experiments also allow us to compare the relative ro-

bustness of all the features. We can observe that PCA derived

features are the most affected by the illumination change, while

being the least affected by compression artefacts. When employ-

ing likelihood normalization, DCT-mod2 features are generally

the least affected by the illumination change, closely followed by

2-D Gabor wavelets. However, 2-D Gabor wavelets, compared to

DCT-mod2 features, are less affected by compression artefacts.
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