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Abstract
It has been recently shown that local feature approaches

to face verification are considerably more robust than holistic
approaches, in terms of translations (caused by automatic face
localization) and pose variations. In this paper we first inves-
tigate whether features based onlocal Principal Component
Analysis (LPCA) are more discriminative than features based
on the 2D Discrete Cosine Transform (2D DCT). We also in-
vestigate several methods for modifying the two feature extrac-
tion techniques in order to counteract the effects of linear and
non-linear illumination changes, without losing discriminative
information. Results on the XM2VTS database show that when
using a Bayesian classifier based on Gaussian Mixture Models
(GMMs), the performances of 2D DCT and LPCA techniques
are quite similar, suggesting that the 2D DCT technique is
preferable due to its lower computational complexity. When us-
ing 8×8 blocks, modifying the 2D DCT and LPCA techniques
by removing the first coefficient, which is the most affected by
illumination changes, enhances robustness with little change
in discrimination ability; removing further coefficients causes
a noticeable reduction in performance on clean images and
provides little gain in robustness. When using the 2D DCT with
16×16 blocks, the first three coefficients need to be removed
in order to achieve good robustness. It is further shown that
contrary to previously published results, the use of deltas of
low-order coefficients (to alleviate performance losses caused
by removing coefficients) can adversely affect robustness.

1. Introduction
Face recognition systems (here we mean both identification

and verification systems) are a particular type of biometric
recognition systems. Applications include transaction authen-
tication, surveillance, forensics and various forms of access
control, such as immigration checkpoints and access to infor-
mation [15], [19].

Many techniques have been proposed for face recogni-
tion; some examples are systems using Principal Compo-
nent Analysis (PCA) based feature extraction [22], modu-
lar PCA [16], Elastic Graph Matching (EGM) [9], Hidden
Markov Models (HMMs) [3], [11] and Gaussian Mixture
Models (GMMs) [3], [18].

The abovementioned approaches differ in one major aspect:
the degree of constraints placed on spatial relations between
face features (such as the distance between the eyes and nose).
In PCA based representation, the relations are rigid, meaning
that translations or local deformations are not taken into
account. In EGM and HMM based systems, the constraints
are more relaxed, allowing for a degree of translations and
local deformations. In GMM based systems, the constraints
are very loose, resulting in good robustness to imperfect face
localization [2] and pose changes [20].

Approaches which have relaxed constraints typically utilize
local features (that is, features which describe only asmall part
of the face). This is in contrast to approaches with rigid
constraints, which typically utilize holistic representations.
For HMM and GMM based approaches, local features are
often obtained by analyzing a face on a block by block
basis. Feature extraction based on the 2D Discrete Cosine
Transform (2D DCT) [13] or DCTmod2 [18] is usually applied
to each block. In 2D DCT based feature extraction, a given
block is decomposed in terms ofpre-definedorthogonal basis
functions. Following the approach used in image compression,
low-order coefficients are retained and form a feature vector
for each block [11].

In [18] it was shown that robustness to illumination changes
can be achieved by removing the first three coefficients;
however, this robustness came at the cost of reduction in
discrimination performance. It was suggested that instead
of throwing out the coefficients, they should be replaced
with “deltas”, which are differences between coefficients ob-
tained from neighbouring blocks. The results showed that
susceptibility to illumination changes was reduced without
a corresponding degradation in discrimination performance.
While the results in [18] look promising, the experiments
had several limitations: (i) a relatively small database was
used, (ii) the illumination change was linear in nature, and
(iii) the classifier was not optimized for each configuration of
the feature extractor, leading to a bias in the results.

In this paper we first evaluate the use of features based on
local Principal Component Analysis (LPCA), where the basis
functions are defined by training datums rather than being
pre-defined like in the 2D DCT. Since the feature extraction
technique would be specifically tuned for faces, we make the
hypothesis that it should provide more discriminative features
than the 2D DCT, and hence obtain higher performance.

Secondly, we investigate several methods for modifying the
LPCA and 2D DCT feature extraction techniques in order
to achieve robustness to illumination changes. Specifically,
we investigate the effects of removing low-order coefficients
(most likely to be affected by illumination changes), the
effects of replacing low-order coefficients with deltas and
also the use of deltas by themselves. The limitations of [18]
are avoided by using a much larger database (295 persons),
a non-linear illumination change (in addition to the linear
illumination change), and properly optimizing the classifier
in each experiment.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the 2D DCT and LPCA feature extraction
techniques as well as provide a brief description of deltas.
Section 3 provides an overview of the GMM based classifier,
while Section 4 is devoted to experiments and discussions.
The main findings of the paper are summarized in Section 5.



2. Feature Extraction
In the feature extraction techniques described below, the

initial analysis stage is the same: each face window is analyzed
block by block; each block has a size ofN×N pixels; unless
stated otherwise,N = 8; the location of each block is advanced
by 4 pixels, resulting in an overlap of neighbouring blocks by
50%1. The choice ofN and the overlap is based on [11], where
a 2D DCT based feature extraction was utilized.

2.1. 2D DCT
Each block, b(x, y), where x, y = 0, 1, ..., N − 1, is de-

composed in terms of pre-defined orthogonal 2D DCT ba-
sis functions (see Fig. 1 for an example). The result is a
N×Ncoefficient matrixC(u, v):

C(u, v) = α(u)α(v)

N−1X
x=0

N−1X
y=0

b(x, y) β(x, y, u, v) (1)

whereu, v = 0, 1, · · · , N−1, α(v) = 1/N for v = 0, α(v) = 2/N
for v = 1, 2, · · · , N − 1 and

β(x, y, u, v) = cos
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The coefficients are ordered according to a zig-zag pattern
(see Fig. 3 for an example), which reflects the amount of
information stored in each coefficient [13] (i.e. lower order
coefficients almost always contain more information). For a
block located at(a, b), the baseline 2D DCT feature vector is
composed of:

x(a,b) =
h
c
(a,b)
0 c

(a,b)
1 ... c

(a,b)
M−1

iT
(3)

wherec(a,b)n denotes then-th 2D DCT coefficient andM is the
number of retained coefficients. For the case ofN=8,M varies
from 1 to 64, depending on the desired dimensionality reduc-
tion. If we follow examples from image compression [13],
as much as 75% of the highest order coefficients (which
represent high frequency information, and is often noise)
can be omitted without adversely affecting image quality.
Reducing the dimensionality has several advantages; firstly, a
smaller dataset is required to adequately train a classifier [10];
secondly, the feature vectors should contain less noise, thus
being more discriminative.

A useful aspect of 2D DCT based feature extraction is
the ability to physically interpret the basis functions. As can
be observed, the0-th coefficient reflects the sum of pixel
values in the block, and as such will be the most affected
by any illumination changes. Some robustness could thus be
achieved by simply removing it from each feature vector.
It can also be observed that the following two coefficients,
which represent the horizontal and vertical pixel intensity
changes, respectively, also have the potential to be consid-
erably affected by illumination changes.

2.2. Local PCA
As opposed to using Principal Component Analysis (PCA)

for holistic representation (where processing one face results in
one feature vector [22]), we shall apply a PCA based feature
extraction technique to each block; we term this method as
local PCA (LPCA).

The first step is to arrange the raw pixels from a given
block into vector format; the pixels are arranged in the zig-zag
pattern, as used in the 2D DCT technique. The choice of

1For a56× 64 (rows×columns) image, this results in 195 feature vectors.

Fig. 1. Graphical interpretation of
the first few 2D DCT basis func-
tions for N=8; lighter colors represent
larger values.

Fig. 2. Graphical interpretation of
the first few LPCA basis functions
for N=8, calculated on the training
section of the XM2VTS database.
Lighter colors represent larger values.

the pattern in this case is arbitrary; any consistent pattern
is suitable. Let us denote the raw pixel vector for a block
at (a, b) as r(a,b). A feature vector, possibly with a lower
dimensionality, is then obtained using:

x(a,b) = UT
ş
r(a,b) − rµ

ť
(4)

In order to keep the complexity low and to retain the advantage
of the GMM classifier being robust to translations of the
face [2], the transformation matrixU and rµ have to be the
same for all vectors (i.e. they cannot be dependent on which
part of the face each raw pixel vector comes from). As such,U
andrµ are found as follows. A set of training raw pixel vectors
is collected from all training face windows; let us define this
set as:

R = { ri }NAi=1 (5)
where the position superscripts have been omitted for clarity.
The mean vector,rµ, of setR is then found. A covariance
matrix is then calculated as

C =
1

NA

NAX
i=1

(ri − rµ) (ri − rµ)T (6)

Matrix U is then formed as
U = [ e1 e2 · · · eD ] (7)

whereen is then-th eigenvector ofC. The eigenvectors are
ordered, in a descending manner, according to their corre-
sponding eigenvalues; doing so defines orthogonal directions
that account for the highest amount of variance.D has the
following constraints:D ≤ NA and D ≤ N2. If D = N2,
no dimensionality reduction occurs, and thus vectorx(a,b)

represents a decorrelated version of the raw pixel vectorr(a,b).
The main difference between 2D DCT and LPCA based

feature extraction is hence in the definition of the basis
functions. They are pre-defined in the 2D DCT, while in LPCA
they arelearned. As such, LPCA basis functions should more
representative of face blocks. Moreover, PCA based dimen-
sionality reduction is optimal in a Mean Square Error (MSE)
sense [23] (i.e. it preserves the most information), thus LPCA
feature vectors could be of lower dimensionality than those
from the 2D DCT based technique. A possible disadvantage
of the LPCA approach is that the basis functions may not have
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Fig. 3. Zig-zag ordering of
2D DCT coefficients forN=4.

Fig. 4. left: original face window;
middle: corrupted with the linear illumi-
nation change;right: corrupted with the
non-linear illumination change; in both
casesδ = 80.



an easily interpretable meaning in terms of image structures
(as opposed to a statistical meaning). Moreover, the basis
functions vary depending on which dataset is used for training.
As such, throwing out specific elements from a feature vector
(as opposed to reducing dimensionality) in order to achieve
robustness to illumination changes may not be possible.

2.3. Delta coefficients

It has been previously shown [18] that on a relatively small
database, and using a GMM based classifier with a low number
of gaussians, simply throwing out the first three coefficients
from 2D DCT based feature vectors increases robustness to
illumination changes at theexpenseof reducing discrimination
ability; this suggests that the first three coefficients are affected
by illumination changes but contain a significant amount of
discriminant information. To counteract this performance loss,
it was proposed to replace (as opposed to throw out) the first
few coefficients with their corresponding deltas, adapting a
technique from speech processing [21].

The n-th horizontal and vertical delta coefficients for a
block located at(a, b) are defined as a modified polynomial
coefficients, respectively:

∆hc(a,b)n =

KP
k=−K

khk c
(a+k,b)
n

PK
k=−K hkk

2
∆vc(a,b)n =

KP
k=−K

khk c
(a,b+k)
n

PK
k=−K hkk

2

where h is a 2K+1 dimensional symmetric window vector.
Typically K=1 and a rectangular window is used (thush =
[ 1.0 1.0 1.0 ]T ). Replacing the first three DCT coefficients
by their horizontal and vertical deltas corresponds to the
DCTmod2 feature extraction method:

x =
h

∆hc0 ∆vc0 ∆hc1 ∆vc1 ∆hc2 ∆vc2 c3 c4 ... cM−1

iT
(8)

where the (a, b) superscript was omitted for clarity. The
assumption in DCTmod2 is that the image corruption (e.g. an
illumination change) isconstantfor the consecutive blocks that
are used for calculating the deltas (i.e. it is locally constant).
Under this assumption, the deltas reflect the information in
the blocks which is not constant, effectively ignoring the
illumination change.

It must be noted that utilizing deltas in a feature vector for
a given block is only possible when the block has vertical and
horizontal neighbours2. Moreover, the use of deltas effectively
increases the area used when obtaining each feature vector.
The increase is dependent on the amount of overlap; the
smaller the overlap, the larger the effective spatial area. For
a 50% overlap (i.e. 4 pixels), the effective width and height
increase from 8 pixels to 8+4+4 = 16 pixels. However, since
we are utilizing only horizonal and vertical deltas, the effective
area increases from a total of 64 pixels to 192 pixels (rather
than 256, which would result from a 16×16 block).

3. Classifier
Face verification can be treated as a two-class classification

problem; the two classes correspond to the cases where a given
face belongs to the claimed identity, or to an impostor. We
utilize a Bayesian classifier based on Gaussian Mixture Models
(GMMs). For each person, two GMMs are utilized: the first is
a representative of the distribution of training vectors for that

2For a56×64 image, and a 4 pixel overlap, this results in 143 vectors.

particular person’s face, while the second is a representative of
the distribution of training feature vectors for all training faces;
the second GMM is commonly known as a generic model,
a world model, or a universal background model [17].

Suppose that we have the following scenario. We are
presented with a face image and also a claim that this face
belongs to personC. To classify the face, a set of feature
vectors,X = {xi}NVi=1, is first extracted. By assuming that each
vector is independent and identically distributed, the likelihood
of the face belonging to personC is found with:

L (X|λC) =
YNV

i=1
p (xi|λC) (9)

where

p (x|λ) =
XNG

g=1
wg N (x, µg,Σg) (10)

λ = {wg, µg,Σg}NGg=1 (11)

and N (x;µ,Σ) is a D-dimensional Gaussian function with
meanµ and diagonal covariance matrixΣ. λC is the parameter
set for personC, NG is the number of gaussians andwg is
the weight for Gaussiang (with constraints

PNG
g=1 wg = 1 and

∀ g : wg ≥ 0).
The generic model is then used to find the likelihood of the

face belonging to an impostor, i.e.L (X|λgeneric). An opinion
on the face belonging to personC is found with:

O (X) = logL (X|λC)− logL (X|λgeneric) (12)

Note that in (12) we assumed non-informative prior proba-
bilities of the two classes. The final decision for the given
face is then reached as follows: given a thresholdt, the face
is classified as belonging to personC whenO (X) ≥ t and
classified as belonging to an impostor whenO (X) < t.

Given a set of training vectors, the GMM parameters (λ)
for each face are found by adapting the generic model using
a form of Maximuma Posteriori (MAP) adaptation [12], [3].
The parameters for the generic model are found using the
Expectation Maximization (EM) algorithm [10], [7] using
information from all training faces. The higher theNG, the
more precise the model (assuming a large enough training
dataset); moreover, even though diagonal covariance matrices
are utilized, it is possible to model correlated datasets as long
asNG ≥ 2 [17].

4. Evaluation
4.1. XM2VTS Database

The XM2VTS database [14] is composed of 295 subjects,
which are divided into three types: 200clients, 25 evaluation
impostorsand 70 test impostors. Each subject attended four
recording sessions taken at one month intervals; during each
session two images were taken. We used Config. I of the
Lausanne Protocol [14], which further partitions the images
into three disjoint sections: training, evaluation and testing.

For all experiments, the training section was utilized as a
source of images for training the face models; the evaluation
section was used for tuning classifier parameters (such as the
number of gaussians and the threshold). Once the optimum
parameters were found, the test section was used for final
performance measurement.

In each experiment, the classifier was given a model of a
client’s face, images of that face and impostor faces; each
given face was classified as either belonging to the client
(i.e. a true face), or belonging to someone else (i.e. an impostor



face). When using the evaluation section, the above procedure
resulted in a total of 600 true face presentations and 40000
impostor face presentations. When using the test section, there
was a total of 400 true face presentations and 112000 impostor
face presentations.

4.2. Performance Measures

Verification systems make two types of errors: a False
Acceptance (FA), which occurs when the system accepts an
impostor face, or a False Rejection (FR), which occurs when
the system refuses a true face. The performance is generally
measured in terms of False Acceptance Rate (FAR) and False
Rejection Rate (FRR), defined as:

FAR =
number of FAs

number of impostor face presentations
(13)

FRR =
number of FRs

number of true face presentations
(14)

To aid the interpretation of performance, the two error
measures are often combined using the Half Total Error
Rate (HTER), defined as HTER=(FAR+FRR)/2; the HTER is a
special case of the Decision Cost Function [1], [8]. A special
case of the HTER, known as the Equal Error Rate (EER),
occurs when the system is adjusted (e.g. via tuning a threshold)
so that FAR=FRR on a particular dataset.

4.3. Illumination Changes

In order to simulate illumination changes, we have applied
(individually) two image transformations to eachtest face
window. The first transformation is linear in nature, while the
second is non-linear.

The linear illumination change simulates the effect of one
half of the face being brighter than the other half. An original
face window,w(x, y), with NX columns andNY rows, is
corrupted to obtain a new face window,v(x, y), using:

v(x, y) = w(x, y) +mx+ δ (15)
for x = 0, 1, · · · , NX − 1 and y = 0, 1, · · · , NY − 1

where m =
−δ

(NX − 1)/2

δ = illumination delta (in pixels)

Since the above model of illumination direction change
is rather restrictive, a second, non-linear (gaussian shaped)
illumination change was also used:

v(x, y) = w(x, y) + 2δ

ţ
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ű
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for x = 0, 1, · · · , NX − 1 and y = 0, 1, · · · , NY − 1

where p = [ x y ]T − [ (NX − 1)/2 (NY − 1)/2 ]T

A =

ů
(NX/4)2 0

0 (NY /4)2

ÿ

δ = illumination delta (in pixels)

While these illumination changes are artificial and do not
represent situations such as self-shadowing, we believe they
are useful in providing suggestive results. Throughout the
experimentsδ was set to 80, representing quite challenging
conditions. Fig. 4 shows the effects of the two illumination
changes.

4.4. Experiments and Discussion

For the purposes of this study, we assumed that we are
dealing with static frontal images and that each face has
been correctly localized and size normalized (that is, the
location of the eyes is the same in each image). Examples of
face localization approaches can be found in [24]. To reduce
the effects of intra-personal variations,closely cropped[4]
greyscale face windows were extracted from original images;
the size of each window is 56×64 (rows×columns) pixels
(following [18]). An example face window is shown in Fig. 4.

The classifier parameters (number of gaussians and the
threshold) were selected to minimize the EER on the evalua-
tion set (i.e. the dataset which isnotused for final performance
measurement). The number of gaussians was varied from
1 to 512, doubling the number of gaussians in each step
(e.g. 1, 2, 4,· · · , 512). The threshold found on the evaluation
section was used on the test section to obtain the final
performance figure (i.e. in terms of HTER).

We evaluated the performance of the 2D DCT and LPCA
feature extraction techniques on clean face images, as well as
face images corrupted with the linear and non-linear illumi-
nation changes defined in Section 4.3. We also evaluated the
effectiveness of several approaches to modifying the above
mentioned feature extraction methods in order to increase
robustness to illumination changes. These approaches are:
• Removing lower order coefficients (which represent basis

functions that are most likely to be affected by illumina-
tion changes)

• Replacing lower order coefficients with their correspond-
ing horizontal and vertical deltas

• Using only horizontal and vertical deltas
We first found the optimal dimensionality on the evaluation
section of the database; this dimensionality was then used
as a baseline for further experiments. Each dimensionality
was based on the cumulative amount of coefficients along
the diagonals traced by the zig-zag pattern (see Fig. 3 for
an example).

The results in Table 1 suggest that when using blocks
of size 8×8, the optimal dimensionality for both 2D DCT
and LPCA is 21 (which amounts to keeping approx. 33% of
the coefficients). The performances of the two techniques are
quite similar, suggesting that the 2D DCT technique is to be
preferred due to its lower complexity. The basis functions in
2D DCT are pre-defined while in LPCA they first have to
be learned; moreover, at the best dimensionality, the 2D DCT
based technique requires less gaussians than the LPCA based
technique.

By comparing Figures 1 and 2, it can be seen that the first
few LPCA basis functions are quite similar to the 2D DCT
basis functions, partly explaining the similar performance of
the two approaches. Moreover, the nature of the first three
LPCA basis functions makes them susceptible to illumination
changes, thus removing the corresponding coefficients from
each vector should achieve a degree of robustness.

In the second experiment, we evaluated the effects of the
linear and non-linear illumination changes. We also evaluated
the effects of removing removing lower order coefficients.
Tables 2 and 3 show the results for the 2D DCT and LPCA,
respectively. The results show that the LPCA technique is



8×8 2D DCT 8×8 LPCA
dim. bestNG EER HTER bestNG EER HTER

1 4 31.83 26.12 4 31.67 26.12
3 128 17.23 13.94 128 18.16 14.04
6 256 12.99 10.83 256 12.33 10.66

10 256 8.17 6.96 512 6.71 7.83
15 256 5.67 5.08 256 6.33 5.20
∗ 21 256 4.83 4.91 512 5.68 5.00

28 256 5.01 4.79 512 5.93 5.12
36 256 5.46 4.79 128 6.16 5.54
43 128 6.16 6.17 128 6.33 5.78
49 128 6.34 6.42 256 6.98 6.45
54 256 6.66 5.78 128 7.66 7.16
58 256 6.85 6.14 128 7.67 6.79
61 256 6.50 6.20 128 8.03 7.11
63 256 6.83 6.97 128 7.49 6.74
64 256 7.50 7.25 128 7.69 6.99

Table 1. Performance of 2D DCT and LPCA based feature extraction
techniques for varying dimensionality. “bestNG” indicates the number of
gaussians which achieves the lowest EER on the validation set. The HTER is
then calculated on the test set.

modified 8×8 2D DCT
dim. clean linear non-lin.

bestNG EER HTER HTER HTER
21 (baseline) 256 4.83 4.91 8.61 9.86

21 - 1 256 5.17 4.37 4.76 6.29
21 - 3 256 7.50 6.50 6.34 6.78
21 - 6 256 10.17 8.12 8.77 8.68
21 - 10 128 15.00 12.06 12.50 12.70

Table 2. Performance of modified2D DCT based method on clean faces
and faces corrupted with the linear and non-linear illumination changes.
The method was modified by removing elements from thestart of the 21
dimensional baseline feature vectors.

modified 8×8 LPCA
dim. clean linear non-lin.

bestNG EER HTER HTER HTER
21 (baseline) 512 5.68 5.00 13.68 11.29

21 - 1 512 5.50 4.09 6.52 8.53
21 - 3 256 7.83 6.38 7.01 8.68
21 - 6 512 10.02 8.65 8.99 9.38
21 - 10 512 14.67 12.39 13.09 12.95

Table 3. As per Table 2, but usingLPCA based feature extraction.

somewhat more affected by illumination changes than the
2D DCT method. For both 2D DCT and LPCA, removing the
first coefficient from each feature vector considerably enhances
robustness to illumination changes, with little effect on the
performance on clean images. Removing more than the first
coefficient causes a noticeable reduction in performance on
clean images and provides little gain in robustness.

In the third experiment we evaluated the effects of replacing
coefficients (as opposed to throwing them out) with their
corresponding horizontal and vertical deltas. By comparing
Tables 2 and 4, it can be observed that the use of deltas
of the 0-th coefficient has little effect on the performance
on clean faces and considerably increases the error rates on
faces corrupted by illumination changes. This can be partly ex-
plained by the breakdown of the assumption of locally constant
illumination changes (as described in Sec. 2.3). Compared to
throwing out the first three coefficients, using deltas of the first
three coefficients results in an improvement in performance on
clean faces, while achieving similar performance on corrupted
faces (implying that in this case the GMM based classifier
effectively tolerates the non-robustness of the deltas of the
0-th coefficient). While not shown here, the results of this
experiment for LPCA are very similar to 2D DCT.

modified 8×8 2D DCT + deltas
dim. clean linear non-lin.

bestNG EER HTER HTER HTER
21 (baseline) 256 4.83 4.91 8.61 9.86
21 - 1 + 2 256 5.33 4.68 7.34 17.98
21 - 3 + 6 128 4.51 4.56 5.08 6.01
21 - 6 + 12 256 4.50 4.75 5.11 6.62
21 - 10 + 20 256 4.67 4.17 4.49 5.93

Table 4. Performance of modified2D DCT based method on clean faces
and faces corrupted with the linear and non-linear illumination changes. The
baseline method was modified byreplacing the elements from thestart of
the 21 dimensional baseline vectors with their corresponding horizontal and
vertical deltas.

8×8 2D DCT deltas only
dim. clean linear non-lin.

bestNG EER HTER HTER HTER
2 (1+1) 32 14.02 12.72 27.11 46.20
6 (3+3) 128 5.33 5.90 9.43 30.44
12 (6+6) 512 3.83 4.23 5.66 14.43

20 (10+10) 512 4.16 4.01 4.78 7.18

Table 5. Performance of 2D DCT based method on clean faces and faces
corrupted with the linear and non-linear illumination changes. The baseline
method were modified by keeping only a specified amount of horizontal and
vertical deltas.

In the fourth experiment we appraised the performance and
robustness of feature vectors which contain only horizontal
and vertical deltas. The results in Table 5 confirm that deltas
of the first element from 2D DCT vectors are considerably
affected by illumination changes. As more deltas are utilized,
the performance and robustness increases, suggesting that only
deltas of higher order coefficients are useful. Again, while not
shown here, the results of this experiment for LPCA are very
similar to 2D DCT.

As mentioned in Section 2.3, one of the effects of using
deltas is an increase in the effective area used when obtaining
each feature vector. The results from the third experiment
suggest that performance can be increased through the use
of deltas, implying that the use of a larger block size may
be beneficial. Instead of using the indirect method of deltas
to increase the area, in the fifth experiment we evaluated the
performance and robustness of feature vectors derived from
2D DCT using 16×16 blocks (compared to 8×8 in previous
experiments). The location advance of each 16×16 block is the
same as for 8×8 blocks (i.e. 4 pixels), resulting in an overlap
of neighbouring blocks by 75%. Results in Table 6 suggest
that the optimum baseline dimensionality is 21, which is the
same as for 8×8 blocks; moreover, the performance on clean
faces is slightly better than for 8×8 blocks.

In the final experiment, we evaluated the effects of the
two illumination changes on the performance of the 16×16
2D DCT based feature extraction technique. As for 8×8
blocks, we also evaluated the effects of removing low-order
coefficients. The results in Table 7 show that removing just
the first coefficient is insufficient to achieve robustness to
non-linear illumination changes. Good robustness is achieved
by removing the first three coefficients, though it comes at
the cost of a small performance degradation on clean images.
Removing more coefficients causes a noticeable reduction
in performance on clean images, with little change in the
robustness. By comparing Tables 2 and 7 it can be observed
that the performance and robustness of 16×16 2D DCT with
the first three coefficients removed (resulting in 18 dimensional
vectors) is similar to the performance of 8×8 2D DCT with
the first coefficient removed (i.e. 20 dimensional vectors).



16×16 2D DCT
dim. bestNG EER HTER

1 2 31.67 31.39
3 256 20.00 16.26
6 256 12.67 10.65
10 256 6.33 6.64
15 512 4.34 4.22
21 256 4.00 4.02
28 256 4.67 4.49
36 256 5.00 4.53
66 128 6.00 6.02
136 128 8.99 7.79
256 64 12.17 12.61

Table 6. Performance of 16×16 2D DCT based method on clean faces.

modified 16×16 2D DCT
dim. clean linear non-lin.

bestNG EER HTER HTER HTER
21 (baseline) 256 4.00 4.02 5.06 8.99

21 - 1 256 3.87 4.34 5.10 8.81
21 - 3 256 5.03 5.05 5.28 5.42
21 - 6 256 7.51 6.81 7.14 7.50
21 - 10 512 10.17 8.91 9.40 10.01

Table 7. Performance of modified 16×16 2D DCT based method on clean
faces and faces corrupted with the linear and non-linear illumination changes.
The dimensionality was reduced by removing elements from thestart of the
21 dimensional baseline feature vectors.

5. Conclusions
In the context of a face verification system utilizing lo-

cal features, we first investigated whether features based
on local Principal Component Analysis (LPCA) are more
discriminative than features based on the 2D Discrete Co-
sine Transform (2D DCT). As opposed to holistic feature
extraction techniques, local features describe only a small
part of the face. The evaluation was performed in terms of
discrimination ability and robustness to linear and non-linear
illumination changes. We also investigated several methods
of modifying the two feature extraction techniques in order to
increase robustness to illumination changes; these are: removal
of coefficients which are deemed to be most affected by
illumination changes, replacing coefficients with deltas (to
alleviate performance losses caused by removing coefficients)
and using only deltas.

Results on the XM2VTS database show that when using
a Gaussian Mixture Model (GMM) based classifier, and a
block size of 8×8, the performances of 2D DCT and LPCA
techniques are similar, suggesting that the 2D DCT technique
is to be preferred due to its lower computational complexity.
The basis functions in 2D DCT are pre-defined while in LPCA
they first have to be learned.

Modifying the 2D DCT and LPCA techniques by removing
the first coefficient, which is the most affected by illumination
changes, clearly enhances robustness. When utilizing analysis
blocks of size 8×8, removing further coefficients causes a
noticeable reduction in performance on clean images and
provides little gain in robustness. When using the 2D DCT
with 16×16 blocks, the first three coefficients need to be
removed in order to achieve good robustness.

The experiments further show that contrary to previously
published results, deltas of low order coefficients are con-
siderably affected by illumination changes. In particular, the
new results strongly suggest that deltas of the0-th coefficient
should never be used. This is attributed to the breakdown of
the assumption of locally constant illumination changes, as
used in the definition of the deltas.
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