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Abstract Approaches which have relaxed constraints typically utilize

It has been recently shown that local feature approachdc@l features (thatis, features which describe orsynall part
to face verification are considerably more robust than holist@l e face). This is in contrast to approaches with rigid
approaches, in terms of translations (caused by automatic fag@nstraints, which typically utilize holistic representations.
localization) and pose variations. In this paper we first inved=0f HMM and GMM based approaches, local features are
tigate whether features based ¢wcal Principal Component often obtained by analyzing a face on a block by block
Analysis (LPCA) are more discriminative than features basé@sis. Feature extraction based on the 2D Discrete Cosine
on the 2D Discrete Cosine Transform (2D DCT). We also inransform (2D DCT) [13] or DCTmod2 [18] is usually applied
vestigate several methods for modifying the two feature extrdo-each block. In 2D DCT based feature extraction, a given
tion techniques in order to counteract the effects of linear arllock is decomposed in terms pfe-definedorthogonal basis
non-linear illumination changes, without losing discriminativéunctions. Following the approach used in image compression,
information. Results on the XM2VTS database show that whew-order coefficients are retained and form a feature vector
using a Bayesian classifier based on Gaussian Mixture Modédg each block [11].

(GMMs), the performances of 2D DCT and LPCA techniques|n [18] it was shown that robustness to illumination changes
are quite similar, suggesting that the 2D DCT technique igan be achieved by removing the first three coefficients;
preferable due to its lower computational complexity. When Uggwever, this robustness came at the cost of reduction in
ing 8x8 blocks, modifying the 2D DCT and LPCA techniquésiscrimination performance. It was suggested that instead
by removing the first coefficient, which is the most affected throwing out the coefficients, they should be replaced

illumination changes, enhances robustness with little chan p o - - - )
in discrimination ability; removing further coefficients cause th “deltas”, which are differences between coefficients ob
amed from neighbouring blocks. The results showed that

a noticeable reduction in performance on clean images a o . I ;
provides little gain in robustness. When using the 2D DCT wif'ScePtibility to illumination changes was reduced without

16x 16 blocks, the first three coefficients need to be removédcorresponding degradation in discrimination performance.
in order to achieve good robustness. It is further shown tk\{gﬁ"e the results in [18] look promising, the experiments
contrary to previously published results, the use of deltas Bd several limitations: (i) a relatively small database was
low-order coefficients (to alleviate performance losses causkged, (i) the illumination change was linear in nature, and
by removing coefficients) can adversely affect robustness. (iii) the classifier was not optimized for each configuration of
the feature extractor, leading to a bias in the results.
; In this paper we first evaluate the use of features based on
1. Introduction local Principal Component Analysis (LPCA), where the basis
Face recognition systems (here we mean both identificatifimctions are defined by training datums rather than being
and verification systems) are a particular type of biometrisre-defined like in the 2D DCT. Since the feature extraction
recognition systems. Applications include transaction autheechnique would be specifically tuned for faces, we make the
tication, surveillance, forensics and various forms of accegpothesis that it should provide more discriminative features
control, such as immigration checkpoints and access to inféan the 2D DCT, and hence obtain higher performance.
mation [15], [19]. Secondly, we investigate several methods for modifying the
Many techniques have been proposed for face recoghPCA and 2D DCT feature extraction techniques in order
tion; some examples are systems using Principal Compo- achieve robustness to illumination changes. Specifically,
nent Analysis (PCA) based feature extraction [22], moduve investigate the effects of removing low-order coefficients
lar PCA [16], Elastic Graph Matching (EGM) [9], Hidden(most likely to be affected by illumination changes), the
Markov Models (HMMs) [3], [11] and Gaussian Mixtureeffects of replacing low-order coefficients with deltas and
Models (GMMs) [3], [18]. also the use of deltas by themselves. The limitations of [18]
The abovementioned approaches differ in one major aspearte avoided by using a much larger database (295 persons),
the degree of constraints placed on spatial relations betweemon-linear illumination change (in addition to the linear
face features (such as the distance between the eyes and ndkejination change), and properly optimizing the classifier
In PCA based representation, the relations are rigid, meaningeach experiment.
that translations or local deformations are not taken into The rest of this paper is organized as follows. In Sec-
account. In EGM and HMM based systems, the constrairiten 2, we describe the 2D DCT and LPCA feature extraction
are more relaxed, allowing for a degree of translations atechniques as well as provide a brief description of deltas.
local deformations. In GMM based systems, the constrairf&ction 3 provides an overview of the GMM based classifier,
are very loose, resulting in good robustness to imperfect fastile Section 4 is devoted to experiments and discussions.
localization [2] and pose changes [20]. The main findings of the paper are summarized in Section 5.



2. Feature Extraction I I I I - — I :

In the feature extraction techniques described below, the
initial analysis stage is the same: each face window is analyzed ' ﬁ H I f c El
block by block; each block has a size §fx N pixels; unless
stated otherwisey = 8; the location of each block is advanced - c ﬂ Ct il I_# h i‘
by 4 pixels, resulting in an overlap of neighbouring blocks by g — =
50%'. The choice ofv and the overlap is based on [11], where g 5 E ﬁ | ﬂ _— g

a 2D DCT based feature extraction was utilized. Fig. 1. Graphical interpretation oFig. 2.  Graphical interpretation of

2.1. 2D DCT the first few 2D DCT basis functhe first few LPCA basis functions
T tions for N=8; lighter colors represefior N=8, calculated on the training
Each block,b(z,y), where z,y = 0,1,..., N — 1, iS de- larger values. section of the XM2VTS database.
composed in terms of pre-defined orthogonal 2D DCT ba- Lighter colors represent larger values.
sis functions (see Fig. 1 for an example). The result is a
N x Ncoefficient matrixC (u, v): the pattern in this case is arbitrary; any consistent pattern

CIN-1 is suitable. Let us denote the raw pixel vector for a block

N
Clu,v) = bz, Ly, u, 1) at (a,b) asr>?. A feature vector, possibly with a lower
(,v) = afu)a() ; uz: (=.9) Bl3,w,) ) dimensionality, is then obtained using:

whereu,v =0,1,--- ,N—1, a(v) = 1/N forv =0, a(v) = 2/N x(@® = ygT b _ r, 4

forv=1,2,---,N—-1and . .
20 + 1) (2 + 1)or In order to keep the complexity low and to retain the advantage

(22 cos Y (2) of the GMM classifier being robust to translations of the

2N 2N face [2], the transformation matrikJ andr, have to be the
The coefficients are ordered according to a zig-zag pattesame for all vectors (i.e. they cannot be dePendent on which
(see Fig. 3 for an examﬂle), which reflects the amount p#rt of the face each raw pixel vector comes from). As stith,
information stored in each coefficient [13] (i.e. lower ordeandr, are found as follows. A set of training raw pixel vectors
coefficients almost always contain more information). For ia collected from all training face windows; let us define this
block located ata, b), the baseline 2D DCT feature vector isset as:

/B(x7 y7 u’ U) = COos

composed of: N R={ri};1 _ ON
. . o 1T where the position superscripts have been omitted for clarity.
x(@?) — [cga» e ) } (3) The mean vectory,, of set R is then found. A covariance

(ab) o _ matrix is then calculated as
wherec;,””’ denotes the:-th 2D DCT coefficient and/ is the 1 Da
number of retained coefficients. For the caseve®8, M varies C=+ > (i) (ri— )" (6)

. . . . . A %

from 1 to 64, depending on the desired dimensionality reduc- . i=1
tion. If we follow examples from image compression [13]Matrix U is then formed as
as much as 75% of the highest order coefficients (which U=[e e - ep ] (7

represent high frequency information, and is often nois@heree, is the n-th eigenvector ofC. The eigenvectors are
can be omitted without adversely affecting image qualitprdered, in a descending manner, according to their corre-
Reducing the dimensionality has several advantages; firstlysgonding eigenvalues; doing so defines orthogonal directions
smaller dataset is required to adequately train a classifier [1fjat account for the highest amount of variangehas the
secondly, the feature vectors should contain less noise, thioowing constraints:D < N4 and D < N%2. If D = N2,
being more discriminative. no dimensionality reduction occurs, and thus vectét?)

A useful aspect of 2D DCT based feature extraction igpresents a decorrelated version of the raw pixel vactdr.
the ability to physically interpret the basis functions. As can The main difference between 2D DCT and LPCA based
be observed, thé-th coefficient reflects the sum of pixelfeature extraction is hence in the definition of the basis
values in the block, and as such will be the most affectédnctions. They are pre-defined in the 2D DCT, while in LPCA
by any illumination changes. Some robustness could thus they arelearned As such, LPCA basis functions should more
achieved by simply removing it from each feature vectorepresentative of face blocks. Moreover, PCA based dimen-
It can also be observed that the following two coefficientsjonality reduction is optimal in a Mean Square Error (MSE)
which represent the horizontal and vertical pixel intensityense [23] (i.e. it preserves the most information), thus LPCA
changes, respectively, also have the potential to be condigature vectors could be of lower dimensionality than those
erably affected by illumination changes. from the 2D DCT based technique. A possible disadvantage
22 Local PCA of the LPCA approach is that the basis functions may not have

As opposed to using Principal Component Analysis (PCA)

for holisticrepresentation (where processing one faceresultsipwv g 1 2 3 -
one feature vector [22]), we shall apply a PCA based featureq o7 1 15 [ 6 4 3
extraction technique to each block; we term this method as| 517 17 12 o pia® | het -
local PCA (LPCA,). . . 2[3|8 11|13 . - .

The first step Is to arrange the raw pixels from a given 5 ————-1—7—+¢ Fig. 4. left original face window;
block into vector format; the pixels are arranged in the zig-zag middle corrupted with the linear illumi-

attern, as used in the 2D DCT technique. The choice ig- i nation changeright: corrupted with the
P q Zgng%T C%'gﬂfggn?ggg\?gff non-linear illumination change; in both

1 : . . cases) = 80.
For a56 x 64 (rowsxcolumns) image, this results in 195 feature vectors.




an easily interpretable meaning in terms of image structunearticular person’s face, while the second is a representative of
(as opposed to a statistical meaning). Moreover, the basig distribution of training feature vectors for all training faces;
functions vary depending on which dataset is used for trainirthe second GMM is commonly known as a generic model,
As such, throwing out specific elements from a feature vectarworld model, or a universal background model [17].

(as opposed to reducing dimensionality) in order to achieveSuppose that we have the following scenario. We are

; Fati i resented with a face image and also a claim that this face
robustness to illumination changes may not be possible. Eelongs o pers%m?. To classify the face, a set of feature
2 3. Delta coefficients vectors, X = {x;};., is first extracted. By assuming that each

vector is mdependént and identically distributed, the likelihood

It has been previously shown [18] that on a relatively smadif the face belonging to persati is found with:

database, and using a GMM based classifier with a low number Ny

of gaussians, simply throwing out the first three coefficients £(XPe) =1 pxlre) )
from 2D DCT based feature vectors increases robustnessmoere

|Ilu'm|nat|_on changes at trm(pgnseaf reducmg (_jlscnmmauon p(x|\) = Z f Wy N (X, 11g, 2,) (10)
ability; this suggests that the first three coefficients are affected g=1 N

by illumination changes but contain a significant amount of A= {wg,pg Bg}, G (11)

discriminant information. To counteract this performance losg d N(x; 4, %) is a D-dimensional Gaussian function with

it was prqp_osed to replaqe (as oppose_d to throw out) th_e f'Fﬁ anu and diagonal covariance mat ¢ is the parameter
few coefficients with their corresponding deltas, adapting Bt for persor’, Ng is the number of gaussians ang is

technique from speech processing [21]. . ; . X ~
The n-th horizontal and vertical delta coefficients for a the weight for Gaussiap (with constraints}> < w, =1 and

block located at(a,b) are defined as a modified polynomial’ g : wg > 0).

coefficients, respectively: The generic model is then used to find the likelihood of the
K K face belonging to an impostor, i.€.(X|Ageneric). AN Opinion
S khy, el S khy, @ on the face belonging to persahis found with:
Arela®) = % Ao = % O (X) =log L (X|\c) — log £ (X [Ageneric) (12)
D km— i 2o rc Note that in (12) we assumed non-informative prior proba-

whereh is a 2K+1 dimensional symmetric window vector.bilities of the two classes. The final decision for the given
Typically K=1 and a rectangular window is used (this= face is then reached as follows: given a thresholthe face

1.0 1.0 1.0 ]"). Replacing the first three DCT coefficient if i
Ly their horizontaP and vertical deltas corresponds to tﬁf classified as belonging to personwhen O (X) > ¢ and

DCTmod?2 feature extraction method: ?assified as belonging to an impostor wher{X) < t.
Given a set of training vectors, the GMM parametex$ (

T
x = [ Neo Neg Ny Ney Koy Nea ez ea o eara } (8) for each face are found by adapting the generic model using
a form of Maximuma Posteriori(MAP) adaptation [12], [3].

e parameters for the generic model are found using the
xpectation Maximization (EM) algorithm [10], [7] using
formation from all training faces. The higher the;, the
jore precise the model (assuming a large enough training

the blocks which is not constant, effectively ignoring th@ataset); moreover, even though diagonal covariance matrices
illumination change. are utilized, it is possible to model correlated datasets as long

It must be noted that utilizing deltas in a feature vector f&° Ne =2 [17].
a given block is only possible when the block has vertical and :
horizontal neighbours Moreover, the use of deltas effectively 4. Evaluation
increases the area used when obtaining each feature veddr. XM2VTS Database
The increase is dependent on the amount of overlap; theThe XM2VTS database [14] is composed of 295 subjects,
smaller the overlap, the larger the effective spatial area. R@hich are divided into three types: 2@fients 25 evaluation
a 50% overlap (i.e. 4 pixels), the effective width and heighinpostorsand 70test impostorsEach subject attended four
increase from 8 pixels to 8+4+4 = 16 pixels. However, sing@cording sessions taken at one month intervals; during each
we are utilizing only horizonal and vertical deltas, the effectiveession two images were taken. We used Config. | of the
area increases from a total of 64 pixels to 192 pixels (rathesusanne Protocol [14], which further partitions the images

where the (a,b) superscript was omitted for clarity. The
assumption in DCTmod2 is that the image corruption (e.g.
illumination change) isonstanfor the consecutive blocks that.
are used for calculating the deltas (i.e. it is locally constant
Under this assumption, the deltas reflect the information

than 256, which would result from a %86 block). into three disjoint sections: training, evaluation and testing.
. For all experiments, the training section was utilized as a
3. Classifier source of images for training the face models; the evaluation

Face verification can be treated as a two-class classificatR#ttion was used for tuning classifier parameters (such as the
problem; the two classes correspond to the cases where a givefber of gaussians and the threshold). Once the optimum
face belongs to the claimed identity, or to an impostor. \Wearameters were found, the test section was used for final
utilize a Bayesian classifier based on Gaussian Mixture Mod@erformance measurement.

(GMMs). For each person, two GMMs are utilized: the first is In each experiment, the classifier was given a model of a
a representative of the distribution of training vectors for thgtient’s face, images of that face and impostor faces; each
given face was classified as either belonging to the client
2For a56x64 image, and a 4 pixel overlap, this results in 143 vectors. (i.e. a true face), or belonging to someone else (i.e. an impostor




face). When using the evaluation section, the above proceddré. Experiments and Discussion

resulted in a total of 6(_)0 true face p_resentations anpl 4000Q-4, the purposes of this study, we assumed that we are
impostor face presentations. When using the test section, th&é%ling with static frontal images and that each face has
was a total of 400 true face presentations and 112000 imposiab, correctly localized and size normalized (that is, the

face presentations. location of the eyes is the same in each image). Examples of
face localization approaches can be found in [24]. To reduce
4.2. Performance Measures the effects of intra-personal variationslosely cropped4]

Verification systems make two types of errors: a Fal eyscale face windows were extracted from original images;

Acceptance (FA), which occurs when the system accepts @ Sizé of each window is 564 (rows<columns) pixels
impostor face, or a False Rejection (FR), which occurs whéillowing [18]). An example face window is shown in Fig. 4.
the system refuses a true face. The performance is generallThe classifier parameters (number of gaussians and the
measured in terms of False Acceptance Rate (FAR) and Falsfeshold) were selected to minimize the EER on the evalua-
Rejection Rate (FRR), defined as: tion set (i.e. the dataset whichristused for final performance

FAR — number of FAs (13) measurement). The number of gaussians was varied from
" number of impostor face presentations 1 to 512, doubling the number of gaussians in each step
FRR — number of FRs (14) (e.g. 1, 2, 4,--,512). The threshold found on the evaluation

section was used on the test section to obtain the final
performance figure (i.e. in terms of HTER).

To aid the interpretation of performance, the two error We evaluated the performance of the 2D DCT and LPCA
measures are often combined using the Half Total Errféature extraction techniques on clean face images, as well as
Rate (HTER), defined as HTER=(FAR+FRR)/2; the HTER isface images corrupted with the linear and non-linear illumi-
special case of the Decision Cost Function [1], [8]. A speciaktion changes defined in Section 4.3. We also evaluated the
case of the HTER, known as the Equal Error Rate (EERdffectiveness of several approaches to modifying the above
occurs when the system is adjusted (e.g. via tuning a threshaitBntioned feature extraction methods in order to increase

number of true face presentations

so that FAR=FRR on a particular dataset. robustness to illumination changes. These approaches are:
« Removing lower order coefficients (which represent basis
4.3. lllumination Changes functions that are most likely to be affected by illumina-

tion changes)

_In order to simulate illumination changes, we have applied, Replacing lower order coefficients with their correspond-
(individually) two image transformations to eadhst face ing horizontal and vertical deltas

window. The first transformation is linear in nature, while the | Using only horizontal and vertical deltas

second is non-linear.

The linear illumination change simulates the effect of on&/€ first found the optimal dimensionality on the evaluation
half of the face being brighter than the other half. An originglection of the database; this dimensionality was then used
face window, w(z,y), with Nx columns andNy rows, is as a baseline for further experiments. Each dimensionality

corrupted to obtain a new face window(, y), using: was based on the cumulative amount of coefficients along
v(z,y) = wlz,y)+mz+6 (15) ?neeigr%%rlgls traced by the zig-zag pattern (see Fig. 3 for
f = 0,1,---,Nx —1 d y=0,1,--- ,Ny —1 s .
or = ’ ’_6’ X and Yy =0 n e Ay The results in Table 1 suggest that when using blocks
where m = Nx =12 of size 8«8, the optimal dimensionality for both 2D DCT

and LPCA is 21 (which amounts to keeping approx. 33% of
the coefficients). The performances of the two techniques are

Since the above model of illumination direction chang@Uité similar, suggesting that the 2D DCT technique is to be
is rather restrictive, a second, non-linear (gaussian shaptgferred due to its lower complexity. The basis functions in

6 = illumination delta (in pixels)

illumination change was also used: 2D DCT are pre-defined while in LPCA they first have to
4 { be learned; moreover, at the best dimensionality, the 2D DCT
v(z,y) = w(z,y)+25 exp <P TA7'p — 3 (16) basheq technique requires less gaussians than the LPCA based
technique.
for z = 0,1, ’TNX —1 and y=0.1,- ’NY; 1 By comparing Figures 1 and 2, it can be seen that the first
where p = [z y|° — [(Nx—-1)/2 (Ny—1)/2] few LPCA basis functions are quite similar to the 2D DCT
A - (Nx /4)* 0 basis functions, partly explaining the similar performance of
0 (Ny /4)? the two approaches. Moreover, the nature of the first three
§ = illumination delta (in pixels) LPCA basis functions makes them susceptible to illumination

changes, thus removing the corresponding coefficients from
While these illumination changes are artificial and do na&ach vector should achieve a degree of robustness.
represent situations such as self-shadowing, we believe theyn the second experiment, we evaluated the effects of the
are useful in providing suggestive results. Throughout thi@ear and non-linear illumination changes. We also evaluated
experimentsy was set to 80, representing quite challenginthe effects of removing removing lower order coefficients.
conditions. Fig. 4 shows the effects of the two illuminatiofables 2 and 3 show the results for the 2D DCT and LPCA,
changes. respectively. The results show that the LPCA technique is



8x8 2D DCT 8x8 LPCA modified 8x8 2D DCT + deltas
dim. best Ng | EER | HTER best Ng | EER | HTER dim. clean linear non-Tin.
1 4 31.83| 26.12 4 3167 | 26.12 best No | EER | HTER HTER HTER
3 128 1723 | 13.94 128 18.16 | 14.04 21 (baseline) 256 4.83 4.91 8.61 9.86
6 256 12.99 | 10.83 256 12.33| 10.66 21-1+2 256 5.33 4.68 7.34 17.98
10 256 8.17 6.96 512 6.71 7.83 21-3+6 128 4.51 4.56 5.08 6.01
15 256 5.67 5.08 256 6.33 5.20 21-6+12 256 4.50 475 5.11 6.62
* 21 256 4.83 491 512 5.68 5.00 21-10+20 256 4.67 4.17 4.49 5.93
28 256 5.01 4.79 512 5.93 5.12 ™
Table 4. Performance of modifie@D DCT based method on clean faces
36 256 5.46 4.79 128 6.16 >.54 and faces corrupted with the linear and non-linear illumination changes. The
43 128 6.16 | 6.17 128 633 | 578 baseline method was modified bgplacing the elements from thstart of
49 128 634 | 642 256 6.98 | 6.45 the 21 dimensional baseline vectors with their corresponding horizontal and
58 256 6.85 6.14 128 7.67 6.79
61 256 | 650 | 6.20 128 | 803 | 711 dim Sx82DDCTdefas only
63 256 6.83 6.97 128 7.49 6.74 ) -
4 556 750 755 178 769 699 best N | EER | HTER HTER HTER
: : : : 2 (1+1) 32 1402 1272 2711 46.20
Table 1. Performance of 2D DCT and LPCA based feature extraction| 6 (3+3) 128 5.33 5.90 9.43 30.44
techniques for varying dimensionality. “besf;” indicates the number of 12 (6+6) 512 3.83 123 5.66 1443
gaussians which achieves the lowest EER on the validation set. The HTER {S20 (10+10) 512 4.16 4.01 478 7.18
then calculated on the test set. Table 5. Performance of 2D DCT based method on clean faces and faces

corrupted with the linear and non-linear illumination changes. The baseline

modified 8x8 2D DCT method were modified by keeping only a specified amount of horizontal and
dim. clean linear non-lin. vertical deltas.
best N | EER | HTER | HTER || HTER

212({’3518"”3) ggg g-?; j-g% i-gé ggg In the fourth experiment we appraised the performance and
51-3 556 —E0 650 637 678 robustngss of feature vectors WhICh contain qnly horizontal
21-6 256 10.17| 8.12 8.77 8.68 and vertical deltas. The results in Table 5 confirm that deltas
21-10 128 1500 ] 12.06 || 12.50 12.70 of the first element from 2D DCT vectors are considerably
Table 2. Performance of modifie@D DCT based method on clean facesaffected by illumination changes. As more deltas are utilized,

and faces corrupted with the linear and non-linear illumination chang
The method was modified by removing elements from dteat of the 21
dimensional baseline feature vectors.

&he performance and robustness increases, suggesting that only
deltas of higher order coefficients are useful. Again, while not

shown here, the results of this experiment for LPCA are very

_ modified 8x8 LPCA similar to 2D DCT.

dim. S CIEER HTER meEaFg rmE"Fg As mentioned in Section 2.3, one of the effects of using
2T (baseline)| 512 =66 500 1368 1159 deltas is an increase in the effective area used_when obtammg
21 -1 512 550 | 4.09 652 353 each feature vector. The results frpm the third experiment
21-3 256 783 | 638 7.01 8.68 suggest that performance can be increased through the use

21-6 512 10.02| 8.65 8.99 9.38 i i i
10 =15 s 1359 T30 505 of deltas, implying that the use of a larger block size may

be beneficial. Instead of using the indirect method of deltas
to increase the area, in the fifth experiment we evaluated the
performance and robustness of feature vectors derived from
somewhat more affected by illumination changes than t® DCT using 16<16 blocks (compared t0>88 in previous

2D DCT method. For both 2D DCT and LPCA, removing thexperiments). The location advance of eack 16 block is the
first coefficient from each feature vector considerably enhanaggme as for 88 blocks (i.e. 4 pixels), resulting in an overlap
robustness to illumination changes, with little effect on thef neighbouring blocks by 75%. Results in Table 6 suggest
performance on clean images. Removing more than the fifisat the optimum baseline dimensionality is 21, which is the
coefficient causes a noticeable reduction in performance eame as for 88 blocks; moreover, the performance on clean
clean images and provides little gain in robustness. faces is slightly better than for-@& blocks.

In the third experiment we evaluated the effects of replacingIn the final experiment, we evaluated the effects of the
coefficients (as opposed to throwing them out) with thetwo illumination changes on the performance of thex16
corresponding horizontal and vertical deltas. By comparirBD DCT based feature extraction technique. As for88
Tables 2 and 4, it can be observed that the use of deltaecks, we also evaluated the effects of removing low-order
of the 0-th coefficient has little effect on the performanceoefficients. The results in Table 7 show that removing just
on clean faces and considerably increases the error ratesthan first coefficient is insufficient to achieve robustness to
faces corrupted by illumination changes. This can be partly exen-linear illumination changes. Good robustness is achieved
plained by the breakdown of the assumption of locally constamy removing the first three coefficients, though it comes at
illumination changes (as described in Sec. 2.3). Comparedth@ cost of a small performance degradation on clean images.
throwing out the first three coefficients, using deltas of the firRemoving more coefficients causes a noticeable reduction
three coefficients results in an improvement in performance om performance on clean images, with little change in the
clean faces, while achieving similar performance on corrupteabustness. By comparing Tables 2 and 7 it can be observed
faces (implying that in this case the GMM based classifi¢ghat the performance and robustness 0k16 2D DCT with
effectively tolerates the non-robustness of the deltas of ttiee first three coefficients removed (resulting in 18 dimensional
0-th coefficient). While not shown here, the results of thigectors) is similar to the performance ok8 2D DCT with
experiment for LPCA are very similar to 2D DCT. the first coefficient removed (i.e. 20 dimensional vectors).

Table 3. As per Table 2, but usingPCA based feature extraction.
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16x16 2D DCT
dim best Ng EER HTER
1 2 31.67 | 31.39
3 256 20.00 | 16.26
6 256 12.67 | 10.65
10 256 6.33 6.64
15 512 4.34 4.22
21 256 4.00 4.02
28 256 4.67 4.49
36 256 5.00 453
66 128 6.00 6.02
136 128 8.99 7.79 1
256 64 12.17 | 12.61
Table 6. Performance of 1616 2D DCT based method on clean faces.
2
modified 16x16 2D DCT 2l
dim. clean linear non-lin.
best Ng EER HTER HTER HTER
21 (baseline) 256 4.00 4.02 5.06 8.99 [3]
21 -1 256 3.87 4.34 5.10 8.81
21 -3 256 5.03 5.05 5.28 5.42
21-6 256 751 | 6.81 7.14 7.50 [4]
21 -10 512 10.17 8.91 9.40 10.01

Table 7. Performance of modified 2616 2D DCT based method on clean [5]

faces and faces corrupted with the linear and non-linear illumination changes.

The dimensionality was reduced by removing elements fronsthg of the

21 dimensional baseline feature vectors. [6]
[7]

5. Conclusions

In the context of a face verification system utilizing lo-[g]
cal features, we first investigated whether features based
on local Principal Component Analysis (LPCA) are more g
discriminative than features based on the 2D Discrete Co-
sine Transform (2D DCT). As opposed to holistic featurg]
extraction techniques, local features describe only a sm ﬁ
part of the face. The evaluation was performed in terms pfi]
discrimination ability and robustness to linear and non-linear
ilumination changes. We also investigated several methogds)
of modifying the two feature extraction techniques in order to
increase robustness to illumination changes; these are: remoeyal
of coefficients which are deemed to be most affected by
ilumination changes, replacing coefficients with deltas (184l
alleviate performance losses caused by removing coefficients)
and using only deltas.

Results on the XM2VTS database show that when usifg!
a Gaussian Mixture Model (GMM) based classifier, and a
block size of &8, the performances of 2D DCT and LPCA(16]
techniques are similar, suggesting that the 2D DCT technique
is to be preferred due to its lower computational complexitj7]
The basis functions in 2D DCT are pre-defined while in LPCA
they first have to be learned. 18]

Modifying the 2D DCT and LPCA techniques by removing
the first coefficient, which is the most affected by iIIuminationlg
changes, clearly enhances robustness. When utilizing anal)gsé
blocks of size &8, removing further coefficients causes a
noticeable reduction in performance on clean images a
provides little gain in robustness. When using the 2D DCT
with 16x16 blocks, the first three coefficients need to bﬁl
removed in order to achieve good robustness. ]

The experiments further show that contrary to previousl
published results, deltas of low order coefficients are colt?!
siderably affected by illumination changes. In particular, thes
new results strongly suggest that deltas of @kt coefficient
should never be used. This is attributed to the breakdown of
the assumption of locally constant illumination changes, as
used in the definition of the deltas.

machine learning library [5].
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