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Abstract

The general object classi cation task distinguishes very different object categories, such as a
house and a bird. In contrast, ne-grained image classi cation aims to answer the question of
given a bird image: which bird species is it? In a more speci ¢ way, it is about species and

sub-category classi cation.

This is a challenging task for two reasons. Firstly, some classes (species) from the same
category, such as sh, have a very similar appearance leading to low inter-class variation.
Secondly, a high degree of variability is prone to occur even within the same class due to
large pose, lighting, and illumination variations in the natural environment. To deal with these
challenges, much of the work has proposed parts-based modelling to explicitly or implicitly nd

local parts and attributes to locate subtle differences in appearance across species.

This thesis explores methods to improve ne-grained classi cation. Firstly, we present a
novel method to deal with intra-class variability by extending the idea of inter-session vari-
ability modelling (ISV), used for face recognition, to the ne-grained classi cation task. We
extend ISV by modelling local variations (local ISV) and empirically demonstrate that this
considerably improves performance. Next, we introduce an automatic subset pre-clustering
framework which allows us to learn discriminative features for each subset (subset feature
learning). Subset feature learning allows us to learn features speci c for each subset. This leads
to considerable improvements in performance, however, its performance is limited by its ability
to select the correct subset at test time. To overcome this limitation we present a mixture of deep
convolutional neural networks (MixDCNNSs) which probabilistically assigns each sample to a
subset. Finally, we explore the usage of both spatial and temporal information and demonstrate

the potential gains that can be made for the task of ne-grained bird classi cation.
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Chapter 1

Introduction

1.1 Overview

Nowadays, countless multi-media resources are being uploaded by people around the world to
the Internet everyday. There were about 880 billion images being taken and uploaded in 2014.
It brings us a major challenge to analyse and understand all these images. Image classi cation,
speci cally object classi cation, serves as an automatic way to interpret, understand and process
images. Object classi cation has been a major focus of research in the computer vision and
machine learning communities in the last decade [Fergus et al.| 2003, Krizhevsky et &l., 2012,
Perronnin et al., 2010]. It focuses on identifying objects in images. For example, an image

showing a persian cat is classi ed with a cat label. Many real-world applications based on

object recognition have been developed for the purpose of automatic image tagging, image

captioning and user interest analysis [Chen él al., 2013, Karpathy and Fei-Fei, 2015].

General object classi cation is limited in its ability to understand image content at a deeper
level. For example, answering the question of whether a bird is presented in the image is easy,
but to tell which bird species is presented is impossible using a general objection classi cation
system. Because constructing an object classi cation system to recognise bird species requires
considerable domain expertise to design a classi er that transforms the raw pixel values of an
image into a representation which could detect and classify a speci ¢ pattern between several
visually similar bird species. Recently, there has been an increasing interest in the research
of sub-category classi cation, also known as ne-grained classi cation. Fine-grained classi-

cation is a relatively new eld and serves as a sub- eld for object classi cation research.

7
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General Object Classification Fine-Grained Classification

class 1 class 2

class 3

class 3 class 4 I

Figure 1.1: Figure shows the concept of general object classi cation versus ne-grained
classi cation. The general object classi cation usually refers to distinguishing very different
object categories such as a car category and a house category. In ne-grained classi cation
problem, all classes belong to the same basic category, but are different bird species.

Distinct from general object classi cation, which aims to nd the correct overall category such

as a bird, dog or plant, ne-grained image classi cation aims to identify the particular sub-

category|[Belhumeur et al., 2008, Kumar etfal., 2012, Liu et al., 2012, Parkhi/et al|, 2012] One

typical example for ne-grained classi cation is bird classi cation. The difference between

object classi cation and ne-grained classi cation is illustrated in Figdre] 1.1.

The objective of ne-grained object classi cation is to identify what sub-category (species)
is present. It enables human beings to further extend image and video understanding by provid-
ing greater detailed information about the objects present in the image or video. For instance,
video cameras embedded with a bird classi cation algorithm could be used to recognise a rare
bird species as well as endangered species. Another example is a food classi cation system

installed in mobile phones can help obese people to calculate and control calorie consumption.

While general image classi cation has progressed at a rapid pace in the past few years, it is
still a challenging task to perform accurate ne-grained classi cation of object sub-categories.
There are three aspects that make ne-grained image classi cation a challenging computer
vision problem, which are illustrated by taking bird species as an example, see Fighre. 1.2.
The rst challenge is the large variations in pose, illumination, and environments within the

same species (intra-class variation). Birds usually live in outdoor environments across various



1.2. RESEARCH QUESTIONS 9

Figure 1.2 Example images from the bird dataset which exhibit large intra-class variations and
low inter-class variations. Each column represents a unique class.

habitats such as tropical forests, coastline and urban areas. Therefore, photos are taken under
different scenarios with day-time and night-time light changes. The second challenge is the
subtle differences between some bird species (inter-class variation). Some bird species have
identical shapes. Sometimes they even share very strong colour and texture similarity. The
third challenge is the limited number of annotated images available for each species. It is
very dif cult for humans without expert knowledge of birds to annotate ground-truth labels for

images and videos.

1.2 Research Questions

The research objective of this thesis is to investigate a general and robust ne-grained classi -
cation system to categorise different sub-categories in challenging scenarios. This is critical for
establishing a more detailed understanding of the visual world. The main question this thesis
aims to answer is: Mow can images or videos of sub-categories in challenging scenarios be

robustly classi ed? This broad question can be broken into three smaller sub-questions.

“Can we model different instances of the same class under various environments (large

intra-class variations)?”
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For ne-grained classi cation, the same class can differ considerably in appearance (see
Figure[1.2). In the eld of biometrics, such as face and speaker veri cation, probabilistic
models such as inter-session variability modelling have been proposed and obtained good
results. We explore these techniques for ne-grained sh and food recognition tasks.
In visual biometrics, there is a strong assumption that all images are well-controlled
regarding lighting, distance from camera, viewpoint etc. This remains a challenge in
ne-grained classi cation because the images are taken in uncontrolled environments
where nuisance from background noise and motion blur is presented. To deal with those
challenges, we extend the session variability modelling into a local region based model

where subtle session variations in local regions are better modelled.

“Can we learn robust and discriminative features in order to classify ne-grained classes

which have small inter-class variations?”

Fine-grained tasks are challenging due to the subtlety of their class differences. In order
to distinguish visually similar classes, it is important to generate discriminative feature
representations for different classes. Pre-clustering similar classes into one subset and
learning subset-speci c features for each subset can substantially improve the capacity of
feature representation and make it possible to learn more discriminative features in order

to distinguish classes which have high visual similarities.

“Can we exploit temporal information available in videos to improve robustness of ne-

grained classi cation?”

Prior work treats the ne-grained classi cation task as a still-image classi cation problem
and ignores the large number of videos available of different ne-grained classes. The
videos are a rich resource in terms of complementary temporal information and extra
training samples regarding different poses and viewpoints. We examine these questions
by evaluating multiple DCNN architectures that each take a different approach to com-
bining information across the time domain. We apply the bilinear DCNN in a novel
manner to jointly exploit spatial and temporal information. In brief, we aim to investigate
information and decision fusion techniques of different sources based on the assumption

that multi-classi cation systems complement each other.
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1.3 Contributions

The main contributions of this thesis are summarised as follows:

1. We apply inter-session variability (ISV) modelling to ne-grained classi cation of two
datasets: sh swimming in a natural environment, and different types of food on plates in
a table setting. We demonstrate that the proposed system can achieve better performance
compared to traditional previous approaches. We then propose a novel extension to ISV
which is called local ISV, so that local region based inter-session variations could be
modelled. We then introduce deep convolutional neural network (DCNN) to generate
low-dimensional feature representations in conjunction with the local ISV model (see

Chapter 3).

2. We propose a novel hierarchical learning framework, which operates in a fully automatic
manner and can be used to learn discriminative subset-based classi ers and features
for the ne-grained classi cation problem. Unsupervised pre-clustering is performed to
split visually similar classes into subsets and subset-speci ¢ features are then learnt and

classi ers for each subset (see Chapter 4).

3. Leveraging the previous work in subset feature learning, we propose a model that can
probabilistically combine multiple DCNNs where each DCNN has been trained on a
subset. To do so, a novel mixture of DCNNSs is proposed (MixDCNN) which allows
us to jointly train an end-to-end network. It obviates the performance loss of two stage
hierarchical system by making the nal classi cation decision summed up from each
DCNN component weighted proportionally to the con dence of its decision (see Chapter
5).

4. We introduce the problem of video-based ne-grained object classi cation, and explore
several methods to exploit the temporal information. A corresponding new dataset is
proposed to evaluate the proposed bilinear DCNN, which extracts local co-occurrences
by combining information from the convolutional layers of spatial and temporal DCNNs

(see Chapter 6).
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1.4 Outline

Much of the work in this thesis has been peer reviewed and published as conferences papers.

The outline of the thesis is as follows:

Chapter 2 presents an overview of prior work in object and ne-grained classi cation. It
examines contributions to the core aspects of ne-grained classi cation problem: supervised
and unsupervised parts modelling, feature engineering, transfer learning, and lastly reviews,
video classi cation and lastly reviews the current datasets being evaluated for ne-grained

classi cation.

Chapter 3 introduces local region based inter-session variability (ISV) modelling using
deep convolutional neural networks (DCNNSs). Two contributions are made. First we introduce
the concept of local inter-session variability modelling by partitioning each imageNinby
N regions Ry;::;; Ry2) and learn a separate ISV model for each local regtpnSecond, we
introduce bottle-neck features for DCNNSs so that a low-dimensional DCNN representation can
be used in conjunction with the ISV model; the DCNN features are usually high dimensional
D = 4096 and we show that this can be reducedto= 128 dimensions using the proposed
bottle-neck features. We then demonstrate the ef cacy and effect of this technique on a chal-
lenging real-world sh dataset which includes images taken underwater. We also use it on
a database of food images taken by mobile devices, providing signi cant real-world session

variations.

Having discussed the importance of local modelling approaches in two related applications,
Chapter 4 discusses the potential of using hierarchical clustering for ne-grained classi cation.
In the rst part of Chapter 4 we present a novel method for ne-grained image classi cation
for bird species based on a hierarchical structure. Our automatically generated hierarchical
system is inspired by the idea of forming a similarity tree where classes with strong visual
correlations are grouped into subsets. An expert local classi er with strong discriminative power
to distinguish visually similar classes is then learnt for each subset. In the second part we
propose a learning system which learns deep convolutional neural network (DCNN) features

speci ¢ to each subset to learn a more discriminative feature representation.

Chapter 5 presents a novel deep convolutional neural network (DCNN) system for ne-
grained image classi cation, called a mixture of DCNNs (MixDCNN). We provide a formula-

tion to perform joint end-to-end training of multiple DCNNs simultaneously. The output from
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each of the DCNNs is combined to form a single classi cation decision. This is in contrast to
subset feature learning in Chapter 4, where each expert is used only for feature extraction. We
evaluate this proposed MixDCNN system on bird and plant datasets. It outperforms previous

state-of-the-art subset feature learning system and general ensemble DCNNSs.

In Chapter 6, we present the novel task of video-based ne-grained object classi cation,
and perform a systematic study of several recent deep convolutional neural network (DCNN)
based approaches, which we speci cally adapt to the task. We evaluate three-dimensional
DCNNSs, two-stream DCNNs and bilinear DCNNs. Two forms of the two-stream approach are
used, where spatial and temporal data from two independent DCNNs are fused either via early
fusion (combination of the fully-connected layers) and late fusion (concatenation of the softmax
outputs of the DCNNSs). For bilinear DCNNs, information from the convolutional layers of the
spatial and temporal DCNNs is combined via local co-occurrences. We then fuse the bilinear
DCNN and early fusion of the two streams to combine the spatial and temporal information at
the local and global level (Spatio-Temporal Co-occurrence). These algorithms are evaluated on

the new and challenging video dataset of birds which we have developed and released.
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Chapter 2

Literature Review

Object classi cation and ne-grained classi cation differ signi cantly. For general object clas-

si cation problems, category differences are salient because the object types and attributes are
distinct from each other. For instance, to distinguish a car from a house, it is easy to locate
the differences in multiple aspects such as texture and shape. By contrast, for ne-grained
classi cation the differences between classes are visible due to subtle changes in terms of
colour, texture and shape because they belong to the same category (such as bird species). In
this chapter we will present an overview of related work to object classi cation and ne-grained

classi cation.

Object classi cation has been a major focus of research in the computer vision and machine
learning communities in the last decade, and considerable progress has been made [Fergus
et al|,| 2003/ Gehler and Nowozin, 2009, Krizhevsky €t|al., 2012, Mutch and|Lowe| 2008,
Perronnin et al}, 2010, Ponce et al., 2006]. A variety of techniques have been proposed and have
achieved impressive results on some popular datasets such as the PASCAL VOC |dataset [Ev-
eringham et al/, 2010] and Caltech 256 [Grif n et al., 2007]. These techniques include feature
encoding methods such Fisher vectors (FV) [Perronnin et al.,| 2010] and Histogram Encod-
ing [Chat eld et all,[| 2011] through to the more recent advent of deep learhing [Krizhevsky
et al},[2012].

A sub- eld of object classi cation called ne-grained classi cation has made great progress
in recent years [Kumar et a/., 2012, Parkhi et al., 2012, Wah et al., 2011b]. The prior work
in ne-grained classi cation can be roughly divided into two tracks. The rst is to localise

the discriminative object parts in the image to compensate for nuisance variations such as

17



18 CHAPTER 2. LITERATURE REVIEW

pose.Many parts-based methods with geometric constraints have been proposed for bird classi-
cation [Zhang et al.| 2014], car$ [Krause et al., 2014], and dbgs [Parkhi et al.| 2012]. Some of
the works explicitly use parts annotations from the dataset to train a strongly supervised parts
detector|[Chai et al., 2013a, Krause etl|al., 2014, Zhang|ét al.| 2014,/2013b] to reduce the effect
of the nuisance variations such as pose and viewpoint. However, these approaches often require
not only ground-truth bounding boxes of the bird's (or other ne-grained object's) location but
also annotations which provide the location of interest parts. Labelling parts for hundreds or
thousands of ne-grained domains is laborious and cost-prohibitive. It is an interesting research
direction to free the algorithm from detailed annotations. Recent work has examined ways to
alleviate this problem by exploring methods to derive weakly supervised or unsupervised parts
detection models [Goring et al., 2013, Jaderberg &t al.,|2015, Krause|et al.] 2015b, Lin et al.,
2015].

The second track is to derive discriminative and robust features. Classic hand-crafted feature
descriptors such as the Scale Invariant Feature Transform (SIFT) [Lowe,|2004a], Histogram
of Oriented Gradients (HoG) [Dalal and Triggs, 2005a], and Color Histogram [Van De Weijer
et all, 2009] which take advantage of color, texture and edge information have been successfully
translated from general object classi cation to the ne-grained classi cation domain [Duan
et al|, 2012 Yao et al., 2011]. Others methods such as the Part-based One-vs-One Features
(POOFs)|[Berg and Belhumeur, 2013] focus on modelling corresponding parts activation, and
have been derived speci cally for ne-grained classi cation. More recently, deep convolutional
neural network (DCNN) approaches for general object classi cation have been transferred to
achieve state-of-the-art performance for ne-grained classi cation by applying transfer learn-
ing [Krause et all, 2015b, Xu etl., 2015, Zhang et al., 2015]. Below we describe the prior work
within these two tracks and then summarise progress that has been made in video classi cation,
an area that is explored within this thesis. We then end with a review of datasets relevant for

ne-grained classi cation.

2.1 Parts-based Modelling

Many of the categories, such as animals and owers, that ne-grained image classi cation is
applied to are highly deformable. This has led researchers to examine the potential to localise

the relatively rigid parts prior to performing classi cation, because this may ameliorate the
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negative effects caused by pose and viewpoint variations. Methods that perform parts-based
modelling can be split into two categories: (i) supervised approaches which learn to recognise
the parts from an annotated dataset and (ii) unsupervised approaches which attempt to learn

consistent parts from a given dataset.

2.1.1 Supervised Parts Modelling

Supervised parts modelling refers to a setting where parts labels or keypoints are explicitly
provided when training a model. We review a keypoint-based model where the explicit location
of each annotation (such as beak, right eye, left eye of bird) is used to either train a poselets
model [Bourdev and Malik, 2009] or keypoint-based segmentation [Xie|et al.] 2013]. Then we
move onto a parts-based model which focuses on patch-based parts modelling [Zhang et al.,
2013b]. Lastly, we brie y mention the “human in the loop” method where users are required to

give feedback to the computer during the model training and testing process [Wah et al., 2011a].

Keypoint-Based Model

Keypoint-based methods like poselets [Bourdev and Malik, 2009] are helpful to localise dis-
criminative parts of objects. Poselet is a pose estimation method based on the correspondence
of con guration in addition to appearance of the object parts. The key idea is to de ne parts that
are tightly clustered both in con guration space (which can be parametrized by the locations of
various keypoints) and in appearance space (can be parametrized by pixel values in an image
patch). The poselets are created by a search procedure. A patch is randomly chosen in the image
of a randomly picked object (the seed of the poselet), and other examples are found by searching
in images of other objects for a patch where the con guration of keypoints is similar to that in
the seed. Given a set of examples of a poselet, which are, by construction, tightly clustered in
con guration space, HoG features are computed for each of the associated image patches. These
are used as positive examples for training a linear support vector machine (SVM). At test time,

a multi-scale sliding window is used to nd strong activations of the different poselet lters.
Such an approach was implemented by Farrell et al. [2011] for birds as birdlets. Their model
associates the underlying image patterns with volumetric part locations. Birds in images are
then modelled by a con guration of volumetric parts. This work was later extendéed by Zhang

et all [2012], with the contribution that the parts model was learnt with fewer representational
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assumptions. This method is able to compensate for variations in pose and different camera

viewing angles by using the ensemble of responses of speci ¢ pose-keypoint con gurations.

Transferring parts or keypoints to novel datasets is another active research eld in computer
vision. One example is exemplar-based method proposed by Liu| et al.| [2012]. Belhumeur
et al| [2011] on localising ducial points in human faces, Liu et al. [2012] predict accurate
locations of dog eyes and noses by learning exemplar-based geometric and appearance models
from the dog training dataset. However, this method is parametric-based and is sensitive to
novel samples.| Goring et al. [2013] proposed a non-parametric parts transfer method. The
method is very simple but has strong non-linearity. To locate parts of the test sample, rst the
similar overall layout of the object of interest is found using the training dataset with HoG as
features. After that, the parts locations are obtained from the annotatiéhs$rafining images,
which are scaled proportionally to the bounding box of the test image. This non-parametric
parts model can alleviate the high variation in part positions that arises from the large number
of different poses of objects in a limited number of images. The advantage of non-parametric
methods allows for coping with high degree of pose and view variations in unseen images where
traditional detection models like deformable part model (DPM) [Felzenszwalb| &t al., 2010]
and exemplar-based method fail. This is valuable for ne-grained problems because intra-class

variations are extremely high.

Deformable Models

Another widespread object detection approach to performing parts localisation is the deformable
model approach. An example of this is the DEM [Felzenszwalb|et al., 2010] which is an object
detection system based on a set of multi-scale individual part models, see Fighre. 2.1. This

concept can be described by the equation:

Xy

EPPM (1: model) = F™  ( I;po) + Epart (Pn; |; model) (2.1)
n=1

Epart (Pi; 1; model) = FM% (11;p,) a(dx,; dyn) (2.2)

whereE or EPPM or Ep, can be interpreted as the matching score between a trained model
and a given image. The trained root model and timeth part model are described By, and

Fmodel  The feature vector at locatiqm in an image is de ned ag 1;p,). To penalize the
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Figure 2.1 Figure shows the concept of DPM model. The model is de ned by a coarse root
Iter and several higher resolution part lters. Felzenszwalb et/al. [2010]

atypical geometric con gurations, 4(dx; dy) is a quadratic function to calculate the relative

location of the part and the root.

Several early works on parts-based ne-grained classi cation adapted this approach to their
problem [Chai et al|, 2013a, Parkhi et al., 2012, Zhang et al., 2013b]. Parkhi et al| [2012]
used DPM to localize the heads of cats and dogs to create the head mask. This methodology is
relatively effective when objects have limited pose variation. Chailet al. [2013a] demonstrated
that the synergy between segmentation and DPM-based detection can be leveraged to create one
framework to alleviate the background noise and large pose variations, which can be bene cial
to ne-grained image classi cation. However, an issue with the DPM approach is that the
distance term is a Gaussian-based model for the part locations. Goring|et al. [2013] analysed
this and concluded that the distribution of parts is not Gaussian for CUB-200-11 [Wah et al.,
2011b], a frequently used ne-grained bird database. Thus, a simple Gaussian distribution does

not have enough capacity to model the pose variations.

Zhang et al.[[2013b] proposed the deformable part descriptors (DPD) based on DPM. It
applies semantic pooling on a weakly-supervised DPM based on weights learnt from training
data. This process avoids using the hard assignment of a distance term for each detected
part. Therefore, the DPD enables pooling across pose and parts without following a Gaussian
distribution, which facilitates tasks such as ne-grained recognition. The overview of the
method can be seen in Figufe.]2.2.

More recently, deep learning has made considerable progress in detection [Girshick et al.,
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Figure 2.2 The DPD [Zhang et al., 2013b] pose-normalised descriptor is generated by pooling
the result of the DPM part localisation result. These results are pooled into regions which are
then concatenated together to form a single feature vector.

2014, Sermanet et al., 2013], and this has been translated to the ne-grained domain. An
example of this is the region-based deep convolution neural network (R-CNN) framework.
This is a two-stage framework where the rst stage provides regional proposals by using a
method such as edge boxes [Zitnick and Bill2014] or selective search [Van de Sande

et al.,, 2011]. In the second stage features are extracted from each region proposal using a
deep convolutional neural network. These are then classi ed using a multi-class SVM. Zhang
et al. [2014] adapted the R-CNN approach to ne-grained bird classi cation by learning a deep
representations of parts with extra geometric constraints to improve the accuracy of bird and
semantic parts detection. However, errors are likely to accumulate in the rst regional proposal
stage, leading to overall performance loss. To address this issues, Zhang et al. [2015] proposed
an end-to-end deep convolutional network (DCNN) to perform parts detection and classi cation

simultaneously by using a spatially ne-grained detection model.

Human in the loop

Other works show impressive results with “ human in the loop ” to assist nding discrimi-
native parts or keypoints for ne-grained image classi cation. Wah et al. [2011a] proposed

an approach that relied on human assistance to give binary answers to the predicted interesting
locations of an object. These responses were used to generate a discriminative feature descriptor

from those points to increase the classi cation accuracy. Deng et al. [2013] proposed an
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interactive game requesting the user to nd the most discriminative parts to help boost the
performance of the classi er, and a method proposed by Parikh and Grauman [2011] discovers
discriminative image parts by machine learning at the rst stage and then asks users to manually
correct and name them. A part-to-part based pairwise comparison mechanism is then applied
to boost the classi cation accuracy. However, these methods are always restricted to small
datasets since human input is time-consuming and requires expert knowledge. Nevertheless,
it remains an open question in ne-grained image classi cation whether it is more critical to
accurately localise corresponding locations over object instances or simply have the ability to

capture detailed information [Gavves et al., 2013].

2.1.2 Unsupervised Parts Modelling

The previous methods for parts modelling require laborious manual annotation of images. By
contrast unsupervised parts modelling provides a more realistic setting for real applications.
Gavves et al. [2013] demonstrated a region partition method to describe parts. Their work
showed that performing accurate localisation of parts was unnecessary as simply dividing the
detected foreground image into a grid of regions provided similar results. The core idea of this
method is that ne-grained classes such as birds normally share considerable shape and appear-
ance similarities. Therefore, exterior shape can be used as a strong signal to locate relative part,
Figure 2.3 provides two examples of this. From the segmentation result of GrabCut [Rother

et al., 2004], unsupervised parts localisation can be calculated with the following:
p
Xst 6 (2.3)

wherex; is the average location of the segmentation pixels prahde are thq -th eigenvalue
and eigenvector of théxs Xs)"(Xs Xs) covariance matrix. This model approximates the
shape of the object as an ellipse and this ellipse should follow the “spine” of the object. The the

three rough parts, head, body, and tail are then roughly segmented.

Duan et al. [2012] proposed a CRF approach to automatically nd discriminative body parts
of animals and their support regions by employing a latent CRF model to discover candidate
parts. Yang et al. [2012] provide an unsupervised approach to localise parts of the bird by
using template learning and matching. In this approach, a template represents a shape and

texture pattern and the relationship between two patterns is captured by the relationship between
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Figure 2.3 A rough shape is aligned in the middle column pictures. Then based on
the alignment results, the shapes are split in the right column pictures equally along the
principal axis to get consistent regions. The red and purple regions represent head and tail
respectively [Gavves et al., 2013].

templates. This re ects the probability of co-occurrence in the same image. Krause et al.
[2015a] achieve good performance on ne-grained bird and car classi cation without using any
speci ¢ parts labels. They propose a method applying co-segmentation to perform pose and
parts alignment. Current state-of-the-art of ne-grained bird classi cation performance without
using parts are proposed by Jaderberg et al. [2015]. The method is called “spatial transformer
network”. It allows the spatial manipulation of data on the existing convolutional neural network
with a differentiable module inserted. By properly modifying the localisation network, it can
localise the discriminative parts of the ne-grained object. It guarantees the discriminability of

the parts detected by driving an end-to-end learning of transformations.

2.1.3 Summary

The motivation to use local parts information is that some ne-grained classes often share the

same parts such as wings, legs and heads for bird species.

Many methods have been proposed to make use of parts-based information which have
already been annotated, a supervised setting (see Sec.2.1.1). These methods assume that this
prior knowledge provides crucial information to discover corresponding patches of the image

which are discriminative for the ne-grained classes.

The rst concern with using parts annotation for large-scale recognition is that it requires
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considerable time and effort to annotate. This motivated the works described in the unsuper-
vised parts annotation (Sec.2.1.2). The methods described in that section overcome this issue by
either only using annotation information at the training stage or deriving methods that require
minimal annotation information (just a bounding box). These unsupervised approaches are

promising due to the potential to enable widespread deployment.

The second concern is that the annotated parts may not contain the most discriminative
information to distinguish ne-grained classes. For example, to distinguish an Africa crow and
an America crow, the texture from local parts does not give much useful information. Instead,
the shape of the whole bird should be considered. This case leads to one opinion that different
birds may need different features to describe them in order to get the best accuracy for the

classi cation.

2.2 Feature Engineering

Several different feature descriptors proposed for general image classi cation have been directly
applied for ne-grained image classi cation in some pioneer works. Most of these are the
classic hand-engineered features that have been used for general object recognitions, includ-
ing: Scale Invariant Feature Transform (SIFT) [Lowe, 2004b], Speeded-up Robust Features
(SURF) [Bay et al., 2006], local binary pattern (LBP) [Ojala et al., 2002], and Histogram

of Oriented Gradients (HoG) [Dalal and Triggs, 2005b]. Later classic features were found
to be suffering from the problem of losing subtle differences between inter-class variations.
To generate more discriminative feature representations, feature encoding methods such as
POOF proposed by Berg and Belhumeur [2013] are implemented to perform ne-grained bird
classi cation. Recent advances in deep learning have led to state-of-the-art results for large-
scale object classi cation [Krizhevsky et al., 2012]. These advances coupled with developments
in transfer learning [Donahue et al., 2014] have led to the applicability of these features to ne-

grained classi cation problems.

2.2.1 Hand-crafted Features

Hand-crafted features refer to manually designed features to extract global or local information

from the image and generate effective representations. There are many manually designed
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features in computer vision for general object classi cation. SIFT was proposed by Lowe
[2004Db]. It is a descriptor that accumulates the statistics of gradients of a circular image patch.
Each image patch is partitioned into several local regions where the histogram of the orientations
of the gradient is formed in each of the regions. The descriptor is formed with the concatenation
of all the histograms. The HoG feature [Dalal and Triggs, 2005b] is similar to SIFT, but differs
in that it is computed on a dense grid of uniformly spaced cells and uses overlapping local
contrast to normalize the feature vector. LBP [Ojala et al., 2002] was originally designed for
text recognition. It is a simple yet very ef cient texture operator which labels the pixels of an
image by thresholding the neighbourhood of each pixel and considering the result as a binary
number. Numerous hand-crafted features have been directly or indirectly implemented for ne-
grained image classi cation. Hand-crafted features such as SIFT and HoG are most commonly
used for ne-grained image classi cation [Brown et al., 2011, Hariharan et al., 2012, Yao et al.,
2012]. One of the major challenges to directly apply hand-crafted features in ne-grained
tasks is that traditional feature descriptors tend to encode the global salient differences between
two categories, but it sometimes fails to catch the subtle differences between two ne-grained

classes.

2.2.2 Feature Encodings

In order to enhance the standard histogram of quantised local features and retain more informa-
tion about the original image features, several feature encoding techniques have been proposed
for general object classi cation in the last decade [Perronnin et al., 2G@G;Hez et al., 2013].
Encoded features such as bags of visual words (BoV) [Csurka et al., 2004] and Fisher vector
(FV) encoding [Perronnin et al., 2010] are widely used in some ne-grained tasks [Gavves et al.,
2013, Gosselin et al., 2013, Philippe and Naila, 2012]. The typical feature encoding system is

composed of the following two steps:

1. Extract local features, such as SIFT and HoG, from images and videos.

2. Summarise the set of local features such as through vector quantisation.

Below we describe the commonly used encoding methods for ne-grained classi cation:
hard-coded BoV, soft-coded FV, and Part-based One-vs-One Features (POOFs). We also present

inter-session variability modelling (ISV) which is a Gaussian based probabilistic modelling,



2.2. FEATURE ENGINEERING 27

Detect afbne covariant regions Represent each region by a SIFT descriptor Build visual vo

Figure 2.4 BoV feature encoding.

similar to FV, that is often used in face and speaker recognition [Vogt and Sridharan, 2008,
Wallace et al., 2011].

Bags of Visual Words

BoV, as the name suggests, extracts a set of local patches and quantises the local descriptors
into a nite set of elements to form a histogram. This method extracts and encodes a set of
local descriptors, such as SIFT descriptors [Lowe, 2004b]. It assigns each descriptor to the
closest entry in a codebook learned of ine by clustering all local descriptors with k-means.
This procedure is described in Figure. 2.4. The BoV method has been extended to include soft
assignment [Philbin et al., 2008] and to use spatial pyramids so that multi-scale and spatial

information can be captured [Lazebnik et al., 2006].

Fisher Vector

FV encoding summarises all of the features using the rst and second order differences. It
comes from the Fisher Kernel (FK) [Jaakkola et al., 1999]. In brief, it consists of characterising
an image sample by its deviation which is measured by the sample log-likelihood with respect
to the model parameters from the generative model. In comparison to BoV the codebook is
represented by a mixture of Gaussians. A GMM is commonly used as a “probabilistic visual
vocabulary”. The FV representation has many advantages over the popular BoV framework.
Firstly, BoV is a special case of FV where all clusters share the same weights. Secondly, FV
can be trained more quickly and on smaller vocabularies with no performance loss. Finally,

it works well with linear classi ers which are very ef cient to learn [Bottou and Bousquet,
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Figure 2.5 Images from the SCface [Grgic et al., 2011] database. Signi cant variations are
present between images.

2011]. Chai et al. [2012] extracted features based on classi cation-oriented encodings and
Fisher vectors. Gavves et al. [2013] implemented Fisher vectors not only globally, but also
on localised appearance descriptors. Gavves et al. [2013], the state-of-the-art performance is

achieved by using FV with colour SIFT features [Van De Sande et al., 2010].

Gaussian Mixture based Session Modelling

While FV uses a GMM as a visual vocabulary to represent difference classes, session variation
modelling aims to model why different instances of the same class (object) appear differently.
Session variation within each class caused by pose and illumination variation has been a con-
stantissue for classi ers in computer vision. It causes one instance of a class to look different to
another image of the same class. Causes of session variation include: appearance, illumination
and pose variations. Example images with some of these variations are in Figure 2.5. In speaker

authentication, various microphones and noisy transmission channels can cause the variation.

A number of techniques have been proposed to compensate for various aspects of session
variability in the veri cation process. Some early work on speech veri cation [Wand and
Schultz, 2011] focus on Gaussian Mixture Model (GMM) based models to model the effect
of session differences and suppress session variation. The GMMs represent each observation as

the combination of a session-independent speaker model with an additional session-dependent
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Figure 2.6 This picture shows two references species' images are aligned according to chosen
parts xed locations [Berg and Belhumeur, 2013].

offset of the model means. The formulation of a GMM based session variation modelling can
be represented as follows:
S=m+ UXij + Dz; (2.4)

Super-vectom is the concatenation of the GMM component mean vectors whiles a low-
dimensional representation of the variability of clasgith instancg . And U is the low-rank
transformation matrix from the constrained session variability sub-spatea diagonal matrix

that incorporates the relevance factor, anis a latent variable with norm distribution. Ideally,

we would like a session variation modelling algorithm that can accurately discern the session-
independent speaker. Recently, inter-session variability modelling (ISV) and joint factor anal-
ysis (JFA) are the two most successful techniques in session variation modelling [McCool
et al., 2013, Vogt and Sridharan, 2008, Wallace et al., 2011]. ISV and JFA have been applied
successfully to both speaker Vogt and Sridharan [2008] and face veri cation [McCool et al.,
2013]. ISV aims to suppress session variation by explicitly modelling and removing within-
client variation using a low-dimensional subspace while JFA also considers the between-client

variation.

Part-based One-vs-One Features

Berg and Belhumeur [2013] proposed a framework to learn a large set of discriminative intermediate-
level features called Part-based One-vs-One Features (POOFs) specialised for a set of parts for
ne-grained classi cation. It is a fully automatic way to learn POOF based features on any
reference dataset. Berg and Belhumeur [2013] randomly train pair-wise classi ers by choosing
reference pairs from the data set with parts alignment as shown in Figure 2.6. Given parts

locations of labelled images, a POOF is de ned to specify two classes. All training samples of
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Figure 2.7: Typical CNN architecture with CONV, FC and POOL layers

two classes are aligned to x locations of two chosen parts. Small cells with multiple scales are
generated where base features are extracted. The maximal connected components contiguous
to the chosen parts are selected by using a linear classi er. The one-vs-one POOF feature is

extracted based on the base feature values from the support region.

2.2.3 Deep Networks

A recent trend in computer vision has been to learn features directly from datasets by applying
a class of techniques known as deep learning. An example of this is deep convolutional neural
networks (DCNNSs), see Figure. 2.7. DCNNs were initially proposed by Le Cun et al. [1990]
to recognize handwritten notes. It attempts to model high-level abstractions in data by using
architectures composed of multiple non-linear transformations. A DCNN is a type of feed-
forward arti cial neural network with individual neurons tiled in such a way that they respond
to overlapping regions in the visual eld. CNNs carry out sub-sampling of images so that
computing time can be reduced. At each convolutional layer, feature maps from the previous
layers are convolved with learnable lters, which then go through a transaction function to form
new feature maps. An example of different feature maps in a CNN is shown in Figure. 2.8.

Each newly generated feature map can be viewed as a combination of multiple input maps.

Hinton et al. [2014], Krizhevsky et al. [2012] have shown that deep or layered compo-
sitional architectures are able to capture salient aspects of given images through discovery of
salient clusters, parts and mid-level features. Krizhevsky et al. [2012] reached state-of-the-
art performance in the ImageNet Large Scale Recognition Challenge (ILSVRC) in 2012 by
using DCNN. Such models are able to perform much better than some traditional hand-crafted

features [Le et al., 2011] by an absolute improvement of 10% on the classi cation track. It
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Figure 2.8 Visualisation of feature kernels. The results are produced by using the
deconvolutional network approach proposed by Zeiler and Fergus [2013].

is believed that conventional hand-crafted features are limited in their ability to learn multiple

levels of abstraction. Donahue et al. [2014] tested a deep convolutional activation feature for
generic visual recognition (DeCAF) on Zhang et al. [2013a] DPD results and achieved state-of-
the-art performance on CUB200-2011 with 64.96% mean accuracy. In the following sections
rst some typical layers in DCNNs will be described, case studies of various recent proposed

network architectures will be given the relevant details after.

Neural Network Layers

A typical deep learning architecture contains a stack of modules, an example of this is shown
in Figure 2.7. Often, each layer has a non-linear function applied to the output. The following
paragraphs describe the various neural network layers, commonly used for classi cation tasks,

and their speci ¢ functions.

Convolutional Layer: The main purpose of a convolutional layer (CONV) is to identify the
local correlations of features from the previous layer. Each unitin a convolutional layer contains
a set of weights and is densely connected to local patches of the previous layer. Weights from
units are learnt through back-propagation training and are regarded as a lIter bank. In many
applied networks, outputs of a convolutional layer are fed into a pooling layer followed by a
non-linear activation function such as a recti ed linear unit (ReLU) [Glorot et al., 2011a] to

increase non-linearity and regularisation.
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Pooling: To further reduce the number of weights produced by convolutional layers, an ad-
ditional sub-sampling layer often applied and is referred to as a pooling function [Le et al.,
2011]. Pooling functions (POOL) such as max-pooling or average-pooling are very useful when
generating statistical features over a small region. The reason for this is that images tend to have
the property of stationarity, that is, features that are applicable in one subregion are likely to be

applicable in other subregions.

Fully-connected Layer. A fully-connected (FC) layer is a typical layer to form a neural
network. A single FC layer has full connections to every single neurons from the previous
layer, thus more weights are retained in this type of layer. The activations can be computed
with a matrix multiplication followed by a bias offset. A FC layer can be easily converted into

a convolutional layer through treating every neuron in the FC layerlas 4 feature kernel.

This is because both layers compute dot products, so their functional form is identical.

Softmax Layer: To calculate the score (probability) of each class in the neural network, a
Softmax layer is normally attached at the end as a classi er. The Softmax classi er is trained
to minimize the cross-entropy between the predicted class probabilities. The cross-entropy of a
Softmax layer is given as follows:

xpfyi

log(P™2 ") (2.5)

| expl

wherey; is the corresponding class label ands the j-th element of the vector of class scores.
The function in the bracket is the Softmax function and gives greater emphasis to the class that

achieved the highest score as well as ensuring that the probabilities sum to 1.

Network Architecture Case Studies

In this section we brie y introduce a few popular DCNNs architectures. These either produced
state-of-the-art results in the ImageNet challenge or are representative works demonstrating

recent advances for DCNNSs.

AlexNet: This refers to the network described by Krizhevsky et al. [2012], and achieved sate-
of-the-art performance in the 2012 ImageNet classi cation challenge (ILSVRC). The authors
trained a deep CNN consisting of eight layers (ve CONV layers and three FC layers) using the

ImageNet dataset [Deng et al., 2009a]. On the basis of an optimized parallel training process,
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the CNN, consisting of more than one billion parameters, took approximately one week to learn

the ImageNet.

GoogLeNet This structure was proposed by Szegedy et al. [2014] and was the winner of
ILSVRC 2014. The network is much deeper than the AlexNet containing 22 layers. The main
idea behind the GoogLeNet is the inception layer which combines information from multiple

scales and signi cantly reduces the number of parameters by using 1 by 1 CONV layers in the
network. Apart from that, GoogLeNet is attached to three loss layers to propagate loss from
the early, middle and late layers of the network which is able to alleviate the issue of dying

gradients during back-propagation training.

VGGNet: The main contribution of VGGNet is to show that using xed small Iter size (3
by 3) from the beginning to end can perform better than large kernel size networks such as
AlexNet and GoogLeNet. Additionally, it was found that VGGNet shows good generalization

in multiple transfer learning tasks [Long et al., 2015].

ResNet Residual Network [He et al., 2015] is the latest winner of ILSVRC 2015. This high
performance model consists of 152 layers and uses batch normalization to compensate irrelevant
variations in every layer. The most important contribution of this architecture is the special
training method where shortcut connections are applied to several local layers to t a residual
mapping. This technique allows easy optimisation even when more than one hundred layers are

presented.

Transfer Learning

A deep learning framework usually needs huge amounts of data to train in order for the cost
function to converge to a good local minimum point and avoid over tting on the training set.
For some tasks such as ne-grained classi cation where the size of the dataset is signi cantly
smaller than the ImageNet dataset, a process known as transfer learning [Donahue et al., 2014,
Glorot et al., 2011b] can be used as a powerful tool to enable training a large target network

without over tting.

A typical way to perform transfer learning or domain adaptation is to train a network from
a general large-scale dataset, in which it is believed that features learned are fairly general, and

then ne-tuning the network parameters on the target dataset. The reason why transfer learning
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works well on DCNN is that a DCNN is used to discover intermediate representations built
in a hierarchical manner, which means the learnt low-level or mid-level features are likely to
be quite general and so can be used to initialize other deep neural networks. Recent studies
have taken advantage of this fact to obtain state-of-the-art results in ne-grained classi cation
and a few other applications [Donahue et al., 2014, Zeiler and Fergus, 2013]. Donahue et al.
[2014] trained Deep Convolutional Activation Features (DeCAF) in ImageNet and achieved
signi cantly better results in general object recognition on Caltech-101 [Fei-Fei et al., 2007],
domain adaptation on Amazon dataset [Saenko et al., 2010], ne-grained recognition on CUB-
200, and scene recognition on SUN-397 [Xiao et al., 2010], compared to traditional non-DCNN

based methods.

Since transfer learning from a general dataset has proven to be an effective and ef cient
method for various tasks, data expansion on the target dataset would add more discrimination.
Some researchers have started to use additional help from the Internet as an useful way to
expand their training dataset [Krause et al., 2015b, Xie et al., 2015, Xu et al., 2015]. Xie
et al. [2015] proposed a method to extend the ne-grained vehicle dataset with external vehicle
data annotated by some hyper-classes. The performance has been further improved on their
ne-grained car classi cation with extra guidance to the learning process by exploring the rela-
tionship between the original ne-grained vehicle class and the new hyper-class. Krause et al.
[2015Db] further showed that training the DCNN-based model on publicly available noisy bird
images from the web with an active learning system and achieved state-of-the-art performance
on CUB200-2011 dataset. The performance of using extra 100,000 images has reached about
90% mean accuracy on the popular CUB200-2011 bird dataset, while using only 5,794 training

images resulted in 80.1% mean accuracy .

2.2.4 Summary

According to the recent literature of feature learning for ne-grained classi cation, there is
no clear line for features being used between general and ne-grained classi cation. In the
early stages hand-crafted feature descriptors such as SIFT and HoG were being used directly
for ne-grained image classi cation. Later on feature encoding methods replaced traditional
hand-crafted features and achieved much better performance. There were no speci c features

designed for the ne-grained problem as it was treated as a texture recognition problem.
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Compared to feature encoding with three steps of extraction, encoding and pooling, the re-
cent success of DCNN enables joint optimization of the whole pipeline, leading to signi cantly
higher recognition accuracy in many object recognition tasks. Transfer learning is normally
conducted with the DCNN for the ne-grained task, however, the DCNN lIters are initially

learned from general image classi cation dataset.

It seems likely many of the lters learned for the general image classi cation are not helpful
to locate nuances in local parts since those lIters tend to capture, for example, shape and

repetitive patterns which are useful to distinguish general classes.

Another problem of using a pre-trained DCNN as a feature extractor is that fully-connected
layer is adapted as a pooling and encoding mechanism, resulting in high dimensional feature
vector and losing of spatial information, which is important to nd local subtle differences for

various ne-grained classes.

2.3 Video Classi cation

Video classi cation has been studied for decades in the computer vision community. Various
problems have been explored such as action recognition and video retrieval [Bendersky et al.,
2014, Blank et al., 2005, Sdhdt et al., 2004]. We divide existing video classi cation technolo-

gies into two tracks: those that describe videos by conventional hand-crafted features; and those

that describe videos by DCNN-based features.

2.3.1 Conventional Features

Traditional video classi cation is a successful area in obtaining global descriptors that encode
both motion and appearance information. There are normally three steps to perform a video
classi cation which are feature extraction, feature encoding and classi cation. The rst step is

to either densely or sparsely extract and aggregate features from local appearance and motion
using hand-crafted features [Liu et al., 2009, Sivic and Zisserman, 2003, Wang et al., 2009].
Several features such as SIFT, SIFT-3D [Scovanner et al., 2007], HoG, HoG-3D [Klaser et al.,
2008] or Histogram of Optical Flow (HoF) [Chaudhry et al., 2009], can be used as a dense
feature representation at this stage. Dense features require heavy computational cost and can

not easily used for real-time applications. One solution to this is to use sparse feature for video
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description. Sparse feature descriptors such as spatio-temporal interest points (STIPs) proposed
by Willems et al. [2008] and which is an extension of Harris corner detector is applied in some
video applications. Wang et al. [2013] proposed dense trajectories with hand-crafted features
and achieved good and fast performance for behaviour recognition. Then they improved their
work by showing that motion signals can be handled separately from the spatial signal [Wang
and Schmid, 2013]. In the next step, extracted features are encoded into a xed-sized video-
level description. One of the popular encoding methods is through BoW. In video classi cation,
BoW is used to learn a dictionary and accumulate the visual words into histograms of varying
spatio-temporal information. Other encoding methods such as FV (introduced in the previous
section) can also be applied for action recognition. The nal step in the conventional model is

to train a multi-class SVM for the classi cation task.

2.3.2 Deep Convolutional Based Model

In the previous section we introduced DCNN and their ability to automatically learn complex
features using a hierarchy of kernels and pooling operations, have proven highly successful
at still image classi cation problems from the small dataset PASCAL-VOC [Everingham et al.,
2010] to the large scale dataset ImageNet [Deng et al., 2009b]. Some work attempts to use CNN
to encode both global and motion information for video classi cation. To transfer DCNNs
from image classi cation to video classi cation task, we need to understand the difference
between them under a DCNN framework. The easiest way to implement the change to video
classi cation is by extracting image-based or motion features from each frame and then pooling
all information across time to make video-level predictions. Karpathy et al. [2014] applied a
DCNN to extract features from every single frame and demonstrated strong performance over
several traditional video classi cation methods (see Figure. 2.9). However, in this work the
pooling results of multiple frames is only marginally better than the single frame based method
which implies that learning motion features using DCNN is dif cult. By contrast, Simonyan and
Zisserman [2014] incorporated motion information from optical ow input with xed inference
time. Tran et al. [2015] employed 3D based convolutional kernel video classi cation. The per-
formance is superior compared to methods using traditional hand-crafted features. Encouraged
by those recent achievements, in this section we will brie y review two related CNN-based

methods for video classi cation.
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Figure 2.9 Figure shows early fusion (right) and late fusion (left) approaches to fuse
information over temporal dimension. Red bars represent convolutional layers, green represents
normalisation layers and blue represents pooling layers. [Karpathy et al., 2014]

Two-Stream Network

Simonyan and Zisserman [2014] proposed the two-stream network for action recognition. It
consists of two independent spatial and temporal convolutional networks. The architecture of
the network can be seen in Figure. 2.10. The spatial CNN operates the same as a still image
classi er, making predictions on individual frames. It has proved that background and context
information is useful to recognise various actions since some actions have high correlations
with certain objects. The temporal CNN takes input from a stacked optical ow maps between
consecutive frames. The optical ow is able to explicitly describe the motion difference between
frame with intensity. The classi cation result is obtained through a late fusion of two softmax
outputs of the independent networks. The downside of this method is in the restriction of the
number of inference frames for prediction. This results in similar performance when compared

to a single frame based CNN method.

3-Dimensional Convolutional Network

The deep 3-dimensional convolutional network (C3D) approach was proposed by Tran et al.
[2015] for action recognition. The network structure is similar to 2D CNN architecture except
all 2D convolution and pooling operations are replaced by 3D receptive elds. It utilises 3-
dimensional convolutional kernels to model multiple frames of information simultaneously.
In contrast to optical ow features where temporal information is explicitly modelled, this

approach implicitly models the information within the DCNN structure. The C3D network
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Figure 2.10 Two-stream network proposed by Simonyan and Zisserman [2014]. The
architecture and parameter setting of spatial and temporal network are the same.

is claimed to have two advantages over two-stream network: First, generic features can be
extracted from the network and applied to various tasks such as action classi cation, sports
classi cation, and scene recognition without restriction of the number of frames. Second,
it provides superior performance on action classi cation in a compact form with low feature

dimensionality.

2.3.3 Summary

Recent work for action recognition has been dominated by the use of DCNNs, several methods
simply stack consecutive video frames into the 2D image-based DCNN to exploit the temporal
information. Such an approach assumes that the DCNN is able to learn the spatio-temporal
information and to assist with this they use pooling to act as a high-level summarisation layer
to capture the movement of the object based on appearances difference in consecutive frames.
However, this method does not give superior performance improvement as stacking the DCNN

is not able to take full advantage of temporal information by just stacking the images.

In order to better use the motion information, the two-stream network decomposes video
frames into spatial and temporal DCNNs by using raw RGB pixels and optical ow frames.
Each stream is learned separately through two different DCNN component, the nal classi-
cation is performed by combing the softmax scores from two networks. The optical ow
component can be treated as a mechanism to force the motion information into the learning
process. One of the major concerns is that it is very hard to optimise the number of horizontally

and vertically ow elds to be fed into the DCNN. Also, the two-stream method lacks a good
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explanation of why using the softmax to fuse the information from two networks.

The C3D method doesn't limit itself to fuse the spatial and temporal information at the last
decision layer. Instead, it embeds temporal information into the network by using lter kernels
with size3x3x3 supporting maximum 16 consecutive frames. All Iters operate through space
and time simultaneously. However, this network can be visualised as a 2D spatial network
with a 1D temporal convolution, the temporal convolutional is performed at higher layers of the
network [Sun et al., 2015]. There is also a strong doubt that C3D can not be controlled to learn
both long term and short term temporal information as the number of channels for each layer is

a xed number [ = 16).

2.4 Fine-grained Datasets

One of the reasons why ne-grained classi cation is a dif cult problem is levels of annotations
(from the bounding box of the bird location in the image to the location of different parts) in the

dataset.

Fortunately, the rapid development of the computer vision data collection community pro-
vides several tools such as online crowd-sourcing technologies [Deng et al., 2009b, 2013] and
advanced methodologies [Van Horn et al., 2015a,b] to ease and accelerate the collection of
large-scale datasets. Datasets collected by those tools accelerate the progress in various object
recognition tasks [Deng et al., 2009b, Everingham et al., 2010, Soomro et al., 2012]. In 2012,
a large-scale image recognition contest was hosted by Stanford University. Despite the fact
that the winning method can be programmed and trained to recognize various categories of
objects in an image, the competition is made possible by a set of more than 14 million images
collected by the Machine Vision Group of Stanford University. For training and competition
purposes, a subset of the ImageNet containing only 1000 categories is used. Overall, there
are approximately 1.4 million images for training and testing and each category has roughly
1000 images. Such a huge dataset enables suf cient training of computer vision models, which

consequently leads to greater accuracy of image recognition.

The whole ImageNet dataset structure is built based on WordNet hierarchy. However, we
should note that the existing 1,000 classes do not belong to the same parent node, implying that

subcategories are not considered. This makes it dif cult to use as a ne-grained dataset. Luckly,
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Figure 2.11 Parts annotation on CUB-200-11.

we have seen rapid growth from the ne-grained community in releasing various ne-grained

datasets such as bird datasets: CUB-200 [Wah et al., 2011b].

CUB-200-2012 [Wah et al., 2011b] contains 200 bird species from north America and each
species is organized by scienti ¢ classi cation under order, family, genus, and species. 11,788
images which results in about 60 images for each class. Images are downloaded from Flickr
image search and annotated via Amazon Mechanical Turk. It is a challenging dataset because
large pose variations are presented in each category. Each image comes with an annotated
bounding box around the bird, as well as annotations for many constituent parts of the object.
Overall, 15 parts are annotated in each image including: back, beak, belly, breast, crown,
forehead, left/right eye, left/right leg, left/right wing, nape, tail, and throat. All parts and

bounding box are annotated by pixel location and visibility in each image.



Chapter 3

Inter-Session Variation Modelling

A challenge for ne-grained classi cation is to correctly identify a class despite large intra-
class variations due to pose and environmental variations. The rst two publications of this
thesis explore the rst research question “Can we model different instances of the same class

under various environments (large intra-class variations)?”.

Inthe rst publication “Local Inter-Session Variability Modelling for Object Classi cation”,
we introduce inter-session variability modelling (ISV) for ne-grained classi cation. ISV aims
to suppress session variation by explicitly modelling and removing intra-class variation using
a low-dimensional subspace. It has been applied successfully to both speaker and face veri-
cation [McCool et al., 2013, Wallace et al., 2011]. We extend this GMM-based method by
modelling local session variations. This is achieved by dividing an image into local regions
and each region is modelled independently. Local region ISV allows us to re-enforce spatial
constraints that were previously being discarded. The proposed method demonstrates improved

performance over the ISV for ne-grained classi cation of sh and face images.

In the second paper “Modelling Local Deep Convolutional Neural Network Features to
Improve Fine-grained Image Classi cation”, we explore the potential of learning local fea-
tures, using deep convolutional neural networks (DCNNS) to extract features from uniformly
partitioned patches in the image. DCNN-based features have been shown to considerably
improve the object recognition performance in various computer vision tasks [Donahue et al.,
2014, Zeiler and Fergus, 2013]. However, DCNN features are high dimensional representations
(4096) compared to traditional features such as SIFT which has 128 dimensions [Lowe, 20044],

making it dif cult to use them as a local feature for stochastic models. Therefore, we propose

41
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to reduce the dimensionality of DCNN features through layer-restricted re-training. We show
that this novel DCNN-based local feature has superior performance over 2D-DCT features for

ne-grained classi cation of sh and food.

To evaluate our proposed methods, we present a new challenging ne-grained database of
sh with 3,960 images collected from 468 species. This data consists of real-world images
of sh captured in conditions de ned as “controlled”, “out-of-the- water” and “in-situ”. More

details can be found in the rst publication of this chapter.

“Local Inter-Session Variability Modelling for Object Classi cation” has been published
at the Winter Conference on Applications of Computer Vision, 2014, and “Modelling Local
Deep Convolutional Neural Network Features to Improve Fine-grained Image Classi cation”

was presented at the International Conference on Image Processing, 2015.
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Abstract tentially useful spatial relationships.
The free-parts approach described in [16] divides the
Object classi cation is plagued by the issue of session face into blocks and each block is considered to be a in-
variation. Session variation describes any variation that dependent observation of the same object (the face). The
makes one instance of an object look different to another, distribution of these blocks is described by a Gaussian mix-
for instance due to pose or illumination variation. Recent ture model (GMM) and has been investigated by several re-
work in the challenging task of face veri cation has shown searchers [16, 9, 10, 19]. Lucey and Chen [9] showed that
that session variability modelling provides a mechanism to a relevance adaptation approach, similar to the one used
overcome some of these limitations. However, for computerfor speaker authentication [14], could be used to quickly
vision purposes, it has only been applied in the limited set- obtain client (class) speci c GMMs by using a universal
ting of face veri cation. background model (UBM). Furthermore, Lucey and Chen
In this paper we propose a local region based inter- showed that adding spatial constraints to this free-parts ap-
session variability (ISV) modelling approach, and apply it proach could yield state-of-the-art face recognition perfor-
to challenging real-world data. We propose a region based mance on the BANCA dataset [13]. Sanderson et al. [15]
session variability modelling approach so that local ses- proposed a multi-region probabilistic histogram (MRH) ap-
sion variations can be modelled, termed Local ISV. We thenproach which used the free-parts approach as its basis but
demonstrate the ef cacy of this technique on a challenging incorporates spatial constraints and also makes several sim-
real-world shimage database which includes images taken pli cations for ef ciency purposes. This ef cient method
underwater, providing signi cant real-world session varia- provided state-of-the-art performance on the labeled faces
tions. This Local ISV approach provides a relative perfor- in the wild (LFW) dataset.
mance improvement of, on averag&%on the challenging Recently in [18, 12] the GMM free-parts (GMM-FP)
MOBIO, Multi-PIE and SCface face databases. It also pro- model was extended to include an inter-session variability
vides a relative performance improvement3&P6 on our (ISV) modelling component. ISV learns a sub-space which
challenging sh image dataset. models the differences in instances of the same object (the
face). Such an approach was initially proposed to cope with
similar problems in speaker authentication [17]. This model
1. Introduction of session variability is used to estimate session variations
in order to suppress, or account, for them. Using this model
Object classi cation is a challenging problem due to yielded state-of-the-art performance on several well known
variations in the appearance of the objects and the envi-face datasets such as MOBIO [11] and Multi-PIE [6]. De-
ronment in which they appear. One of the best known and spite this state-of-the-art performance, this approach has an
most well investigated object classi cation problems is that obvious limitation as it does not enforce any spatial rela-
of face recognition, where variations in subject pose and tionships between the blocks (observations), which discards
lighting present signi cant challenges [6]. A recent state- spatial information which would help to disambiguate be-
of-the-art face recognition approach uses session variabilitytween the classes. Furthermore, its general applicability to
modelling [12] to provide a general model that describes the vision problems has not been shown as it has only ever been
differences that occur between instances of the same classapplied to face recognition.
whether that be from pose, illumination or expression varia-  Contributions: In this paper we propose a local inter-
tion. This session variability modelling approach is applied
in the context of a free-parts model [16], which discards po-  'http://itee.uq.edu.au/ conrad/lfwcrop/




session variability modelling approach that enforces local into N overlapping blocks which are considered to be in-
spatial relationships that were previously discarded. Thisdependent observations of the same underling signal (the
approach is similar to [15] which adopts a multi-region face),O. From each block a 2D-DCT feature vector of di-
probabilistic histogram approach. However, rather than mensionM is obtained to compactly represent each block,
using a probabilistic histogram that uses the zeroth ordersuch that then-th block yields the feature vector,. Thus
statistics of a GMM [15], we apply this to the GMM-FP thej -th image of the-th client yields the set afi observa-

the zeroth and rst order statistics which provide a better ap- feature vectors is then modelled using a GMM,
proximation of the underlying data. We also apply, for the
rst time, the ISV model to the broader problem of object
classi cation to examine the general applicability of this
technique. To do this we use a large sh image dataset that
contains challenging real-world images consisting of sh whereC is the number of components for the GMM, is
images captured in conditions ranging from controlled with the weight for componert, . is the mean for component
a constant background and illumination, through to under- ¢, and . is the covariance matrix (usually considered to be
water imagery of sh in their natural habitat with signi cant  diagonal) for component
illumination and pose variations. In order to overcome the limited number of samples per
We show that introducing spatial constraints leads to client, i, mean-only relevance MAP adaptation [9] is used
state-of-the-art performance for face and sh image clas- to enroll the client (class). Originally proposed for speaker
si cation. Spatial constraints are introduced by dividing the authentication [14], mean-only relevance MAP adaptation
images intdR regions and learning a model speci ¢ to each takes a prior model, usually referred to as a universal back-
region. This allows us to locally model session variability ground model (UBM) GMM, and performs MAP adapta-
and capture local identity information. For face recognition tion on the means using the observations ofithie client,
this Local ISV approach provides an average relative im- O;, to obtain a model for the client. Since only the mean
provement o23%for the MOBIO [11], Multi-PIE [6] and vectors change, it has been shown [17] that this can be writ-
SCface [5] databases over the existing state-of-the-art. Forten as,
sh classi cation, we show that using Local ISV provides a si=m + Dz;; 2
relative performance improvement 86%
Finally, we examine the sensitivity of the Local ISV ap-
proach to real-world problems such as errors in face locali-
sation. Using the real-world MOBIO database, which con-

Pr(Oj )= PeN[on] o cls 1)

n=1 c=1

wheres; is the mean super-vector for tieh client,m is
the mean super-vector of the UBM GMM (the priog),
is a normally distributed latent variable, abd is a diag-
onal matrix that incorporates the relevance factor and the

sists of face images captured from amobile phone, we intro- ¢~ iance matrix [17] and ensures the result is equivalent
duce noise to the manually annotated landmarks to simulate, mean-only relevance MAP adaptation

misalignment, a problem often encountered in practical ap- To evaluate the likelihood that image described by a

plications [7]. Empirically we show that the Local ISV ap- ot o observation®;, was produced by clierit a log-

proach is more sensitive to this misalignment, but still pro- yy ojihgoq ratio is used. In this case the positive class is

vides superior performance when the noise in the positiongiven by the claimed identityand the negative class is rep-

of the landmarks is less th&@%of the inter-eye distance.  ocaonted by the UBM GMM. Thus, the log-likelihood ratio
The remainder of the paper is organized as follows. An is,

overview of existing work is presented in Section 2; the pro-

posed region based GMM and ISV based face authentica- h(Oy;s;)=log[p(O:jsi)] logp(O¢jm): (3)

tion frame works are explained in Section 3. Databases and

protocols used in the experiments are presented in Sectiodt was shown in [19] that this could be ef ciently calculated

4. In Section 5, we present the experimental results usingusing the linear scoring approximation [4] leading to,

our novel sh image database and three face databases. We

ey = T o1 .
conclude the paper in Section 6. Rinear (O1;si)=(si m) Fijm s (4)

. where the diagonal matrix is formed by concatenating
2. Prior work the diagonals of the UBM covariance matrices &ng, is
the super-vector of mean normalised rst order statistics as
given in [12]. A decision threshold,, is applied to this
Several researchers have examined the use of the GMM=score to decide if the observations were generated by the
FP framework to perform face veri cation [16, 9, 19]. In- model,s;. Image,O¢, is classi ed as being of client if
troduced in [16], this approach divides the image (the face) and only ifhjinear (O¢; Si)

2.1. GMM Free-Parts for Face Veri cation



Super-vector notationis a way of compactly represent- ratio (LLR),
ing data for a GMM. It is particularly useful when we con-
sider mean-only relevance MAP adaptation as the only part ~ hisy (O¢;Sisvi ) =(Sisvi m )T !

of the model that changes is the means. Since the weights, ¢ N UX. ) (7)
[!'1;:::;1 ¢], and variances, 1;:::; c], are xed each tjm LS 2 LUBM

model can be described by the concatenation of their means ) o )
to form a single super-vecta = [ I ..... ‘(I';]T More whereN ; is the zeroth order statistics for the test sample in

details for this notation can be found in [12]. a block diagonal matrix as de ned in Equation 11 of [12].

2.2. Inter Session Variability Modelling 3. Proposed approach

Inter-session variability modelling (ISV) has been ap- e propose to overcome one of the major limitations of
plied successfully to speaker [17] and face veri cation [12]. the ISV approach to image classi cation by dividing an im-
ISV aims to model and suppress session variation, that isage into local regions. Doing this allows us to re-enforce
variation that makes one image of the same class look dif-spatial constraints that were previously being discarded. To
ferent to another image of the same class. For face recogproperly evaluate the local ISV approach we also have to
nition this is often considered to be illumination, pose or evaluate the local GMM-FP approach to ensure that locally
expression variation. At enrollment time session variation modelling session variability is not being boosted solely by
is suppressed by jointly estimating a latent session variablepeing able to extract local class speci ¢ information.
along with a latent identity variable, the latent session vari-  The approach is similar to work conducted in [15] where
able is then discarded. When SCOfing, an estimate of the |a'a probab”istic histogram for local regions was formed us-
tent session variable, is obtained from the test samples, jng a GMM, termed a multi-region probabilistic histogram
O:. This estimatex;, is then used to offset the models so (MRH). This MRH approach collates the zeroth order statis-
that the likelihood function now takes into account the ses- tics, the occupation probabilities, of a GMM to perform
sion variation (noise), of the test samples; see [12] Sectiong|assi cation. By contrast, we propose to apply local re-
3.5 for more details. gion decomposition to the ISV approach due to their state-

Enrolling a client for ISV consists of MAP adaptation, of-the-art performance when used globally in [12]. These
similar to mean-only relevance MAP adaptation. The dif- techniques collate the zeroth and rst order statistics of a
ference is that a sub-spadé, is introduced to model ses-  GMM to perform classi cation, furthermore, ISV provides

sion variation and so restricts the movement for relevancegn additional constraint to the MAP equations to suppress
adaptation such that the model for jheh image of the-th session variations (noise).

client (class) is,
3.1. Local GMM Free-Parts Approach

We propose an extension to the GMM-FP approach

wherex;; is the latent session variable and is assumed toWhereby the input images are divided into a seRofe-

be normally distributed. In this way each image is consid- 9ions and each region is modelled independently. This ap-
ered to have been produced with its own session variation;Proach, termed Local GMM-FP, allows us to derive local
for instance due to pose or illumination variation. As pre- descriptions of the identity variation. Similar to the GMM-
viously mentioned when performing enroliment the session FP approach, the proposed Local GMM-FP technique di-

varying part Ux i ) is discarded and only those parts per- Vides each region into a set of overlapping blocks from
taining to identity are retained. Thus, the ISV client model Which DCT features are extracted. A local GMM UBM is

is given by, then Iearnt.for egch speci ¢ regicMr ,my ,.and Ioc_:al mod- _
Sisvi = M + Dz ;: (6) els of the identity are then obtained using region specic
mean-only relevance MAP adaptation,
This should not be confused with mean-only relevance

MAP adaptation (see Equation 2) as the latent variabies Spi = My + Dz (8)
andz; are jointly estimated for ISV.

Scoring with ISV is performed by rst estimating the la- wheres,; is thei-th client model corresponding to region
tent session variable,, for the test sampl®;. This is then r,z. isanormally distributed latent variable for region
used to offset the client moded|y;; ) and the UBM (n) so andD | is a diagonal matrix that incorporates the relevance
that the log-likelihood is estimated in the session conditions factor and the covariance matrix [17] as per Section 2.1.
of the test samples. This provides a mechanism to com- Thet-th image is compared to theth client model in a
pensated for session variation. When used in the contextregion speci ¢ manner. Thus the observations fromrttk
of linear scoring, this leads to the following log-likelihood region oft-th image, O , are compared to thieth client's

Ui = m+ Uxj + Dz, (5)



model for ther-th region,s;; . Thus the LLR becomes re-

gion speci c,
Niinear (Ort ;Sri ) = (Sri 9

where | is the covariance matrix for theth region and
frijm, is the mean normalised rst order statistics for the
r-th region. Subsequently, all region specic scores are
summed and compared to the threshold,

T 1 .
mr) r fr;tjm,v

3.2. Local Inter-Session Variability Modelling

In this section we propose to apply ISV to local regions
so that we can locally model session variability and cap-
ture local identity information. We apply a similar con-
cept to Section 3.1 of dividing the image ink regions
and again perform MAP adaptation for each region inde-
pendently. Thus for thg-th image of the-th client in the
r-th region we obtain the model,

Ui

= m,+Urxr;i;j +DrZr;iZ (10)

A region speci c ISV client models;sy.i , is formed

by,

Sisviii = My + Dz (11)

During the evaluation process, the region speci c latent ses-

sion variablex; is estimated foiO; using ther-th re-
gion from thei-th client model. Then, session variation is

in the image quality and environmental conditions, see Fig-
ure 2 for example imagesfor some example images.

Approximately half of the images have been captured
in the “controlled” condition, where the image of the sh
has been captured out-of-the-water with a controlled back-
ground. The “in-situ” condition consists of images taken
underwater with no control over the background and with
signi cant pose and illumination variations. Approximately
one third of the data was captured in this manner. Finally,
the remaining images are captured “out-of-the-water”, but
without a controlled background and may contain some mi-
nor pose variation.

Evaluation Protocol: An evaluation protocol, similar
to [11] and [3], has been developed for experiments on this
dataset. We de ne three sets of data by splitting the data,
based upon species (class), into a training s=in) to
learn/derive models; a development sa#\j to determine
the optimal parameters for our models; and an evaluation
set gval) to measure the nal system performance.

Two protocols are de ned to evaluate the system per-
formance when high quality (“controlled”) and low quality
(“in-situ”) data is used to enrol classes. Protocol 1a uses one
enrollment image per species from the “controlled” data.
Protocol 1b uses one enroliment image per species from the
“in-situ” data. For both protocols, the same test imagery
(a mix of “controlled”, “in-situ” and “out-of-the-water” im-

compensated for by adding this estimated session offset taages) is used. Thigain set consists of; 296 images from

Sisv:ri  prior to scoring.

4. Database and Evaluation Protocols
4.1. Fish Image Set

To evaluate the new ISV approach in the broader ob-
ject classi cation domain we introduce a new, large sh
image dataset consisting 8f 960 images collected from
468species. This data consists of real-world images of sh
captured in conditions de ned as “controlled”, “out-of-the-
water” and “in-situ”. The “controlled” images consist of
sh specimens, with their ns spread, taken against a con-
stant background with controlled illumination, see Figure 2

(a) and (b). The “in-situ” images are underwater images of

sh in their natural habitat and so there is no control over
background or illumination, in addition there is the chal-

lenge of the unique underwater imaging environment, see

Figure 2 (c) and (d). The “out-of-the-water” images con-
sist of sh specimens, taken out of the water with a varying
background and limited control over the illumination con-
ditions, see Figure 2 (e) and (f).

There are two main dif culties when performing classi-
cation on the shimagery. The rstis that, in many cases,
different species are visually similar, as shown Figure 1 (a)-

169 species, and can be used to learn or derive models for
principal component analysis, probabilistic linear discrim-
inant analysis, or for learning the UBM GMM The dev

set consists 0058 images from93 species, and theval

set consists 0963 images from98 species. For these two
protocols thedevandeval partitions consist of the sub-set
of species for which we have at least three images, with at
least one “controlled” and one “in-situ” image.

We evaluate system performance by measuring the
Rankn identi cation rate, using manually annotated
bounding boxes.

Rankn refers to the percentage of queries for which the
correct result in within the top matches. We measure per-
formance an = 1, n = 5 andn = 10. The bounding
boxes were obtained by inscribing a region around the body
of each sh, an extr8% margin was added to avoid losing
edge information, example bounding boxes are shown in
Figure 2. The new sh database which has been presented
will be made publicly availabfe

2images (a) and (c) in the Figure 2 are from Australian National Fish
Collection CSIRO, (b) is taken by G. Edgar, and (d) is taken by Dennis
King

3to train ISV there we only use tH55 classes that have more than one

(d) where it can be seen that four species are visually Sim-jmage per species

ilar. The second is that there is a high degree of variability

4see http://tiny.cc/ shdataset for details



(a) Thalassoma Trilobatum (b) Thalassoma Quinquevittatum (c) Thalassoma Purporeum  (d) Thalassoma Hardwicke

Figure 1: Example images of four different sh species, all which have similar visual appearance despite being distinct
species. (Images taken by J.E. Randall)

Figure 3: Example images from the MOBIO [11] database.

(a) “controlled” (b) “controlled”
(c) “in-situ” (d) “in-situ” Figure 4: Example images from the Multi-PIE [6] database.
(e) “out-of-the-water” (f) “out-of-the-water”

Figure 2: Example images of two different sh species cap-
tured under the three different capture conditions (from top
to bottom): “controlled”, “in-situ” and “out-of-the-water”. ~ Figure 5: Example images from the SCface [5] database.
Signi cant variation in appearance due to the changed
imaging conditions (session variation) is evident. Ground

truth bounding boxes are shown in red. the MOBIO, Multi-PIE and SCface databases respectively.

More details on the protocols for the MOBIO and SCface
databases are given in [18], and for the Multi-PIE database
in [3].

System performance is presented in terms of equal er-
Three face databases are used to evaluate the proposedr rate (EER) and half total error rate (HTER) [11]. EER
approach: MOBIO [11], Multi-PIE [6], and SCface [5]. is used for the development set and is the point at which
Face veri cation is still a challenging classi cation problem the false alarm rate equals the false rejection rate (a smaller

and we want to compare the proposed approach to the curnumber is better). The threshold, derived from the EER
rent state-of-the-art. The MOBIO and Multi-PIE databases on the development set is then used on the evaluation set
contain pose and illumination variations, while MOBIO and to obtain the HTER (the average of the false alarm rate
SCface contain images captured with different sensors. SC-and false rejection rate) to present the nal system perfor-
face also contains variations in the resolution of the cap- mance (a smaller number is better). Linear scoring and
tured images. ZT-Normalisation are used for all evaluated systems, as it
When performing evaluations on each database we usé)as previously been shown to be effective for face recogni-
the well de ned protocols that provide dedicatedin, dev ~ tion [19].
andeval sets. In each case approximately one third of the
data is used for each set. Thain, devandeval datasets
are used in the same manner as outlined in Section 4.1. For An issue for any real world face veri cation system is
all three databases we use manually annotated eye locationi$s robustness to face mis-alignment; that is, the perfor-
and examples images are provided in Figures 3, 4 and 5 formance degradation when the face image is not extracted per-

4.2. Face Databases

4.3. Impact of Face Localisation Error



System Protocol 1a  Protocol 1b
Dev Eval Dev Eval

PCA+PLDA 23.8 238 164 17.9

RBF-SVM (HoG) 31.8 314 242 255

GMM-FP 295 326 252 28.0
Local GMM-FP ~ 37.4 43.0 34.6 40.2
ISV 349 378 309 335

Local ISV 43.1 49.3 408 46.7

Table 1: Fish Identi cation Results. Rank-1 identi cation
rate results are given, and the best performing system is
shown inbold.

Figure 6: Rank-1, Rank-5 and Rank-10 identi cation rates

fectly (based on the eye positions). Therefore, we evaluatefor Protocol 1a on the evaluation set.

the robustness of our proposed approach to errors in mis-

alignment by introducing noise into the manually annotated Fqr the SYM approach we use a histogram of oriented gra-

landmarks. We choose the MOBIO database for this eval-gients as the feature and a radial basis function as this pro-

uation, and add uniform random noise equales, 5%, vides superior performance over a linear SVM, referred to

10%and20% of the average inter-eye distandel @ pixels as RBE-SVM.

for the MOBIO database). The new landmark points which  Results presented in Table 1 show that the Local ISV ap-

have been used in this experiment are publicly available  proach outperforms all other approaches. The standard ISV
) approach clearly outperforms the RBF-SVM and GMM-FP

5. Experiments approaches, and the Local ISV approach provides a rela-

ive performance gain @d5% when compared to ISV. The

. . Al
The proposed techniques have been implemented LISIng§1ext best system is the Local GMM-FP approach which pro-

the the freely available signal processing and machine learn- . ) 0
ing tool box, BOB [1]. vides a relative performance gain38%when compared to

GMM-FP. The Rank-5 and Rank-10 identi cation results,

5.1. Evaluation on Fish Image Set in Figures 6 and 7, show that Local ISV and Local GMM-
] ] ) FP provide consistently improved performance.
The images are cropped with an extra margin3e6 A general trend for all of the classi ers is that Protocol 1a

added to the ground truth bounding boxes. Images are theryryides better performance than Protocol 1b. The average
converted to gray-scale and resized@ 64pixels. DCT rgjative performance difference for all classi ers between
features are extracted exhaustively using a block size ofpygtacol 1a and Protocol 1b 8% This is likely due to

20 20with M = 65. Mean and standard deviation is  the fact that for Protocol 1a the enrollment data consists of
applied to each block, as such the 26r@CT coef cient a “controlled” image, compared to Protocol 1b which uses
is discarded. GMM based approaches s2components,  ap “in.sity” image. This demonstrates the importance of
for the sub-space size is set@d for Protocol 1a an®2 having high quality enroliment data with which to generate
for Protocol 1b. For the local approaches the optimal region 4 model, even when session variability modelling is used.

size was found to bé 4. ) . .
The shimage dataset is a new dataset and so in addition5.2. Evaluation on Face Veri cation Databases

to the proposed approaches we also present several baseline When extracting the DCT features we use a block size
systems. The baseline systems used in this work are probag: 15 15 \vith M= 44 for the MOBIO and Multi-PIE
bilistic linear discriminant analysis (PLDA) which achieves databases. For the SCface database. we used a block size
state-of-the-art performance for face recognition [8], and of 20 ZOWith M = 65. These optima] block and feature
a support vector machine (SVM) approach similar to that sizes were taken from ['19]
used for classifying pedestrians [2]. Forbpth the PLIZ?A and We evaluated the proposed local face veri cation ap-
SVM approa(ljches Wezs?d lthngral):/)fS'zZ‘Ie |mage|s ‘é"_h'Ch hav?)roach on three databases as outlined in Section 4.2. Our
een resized 960 64 pixels. For We apply dimen- — ,ron0sed technique is compared to three baseline tech-

S|onal|ty_usmg principal componer_lt gnaIyS|s (PCA) as this nigues: MRH, GMM-FP and ISV. In this experiment UBMs
showed improved performance, this is termed PCA+PLDA. 0 ained witrs12components for MOBIO and Multi-PIE

Svisit https://wiki.qut.edu.au/display/saivt/Noisy+MOBIO+Landmarks and256 components for SCface. In the |S_V and Local ISV
for details approaches a sub-spaced@fcomponents is used for MO-
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Figure 8: Performance of the Local GMM-FP and GMM-
FP face veri cation systems in the presence of face locali-

Figure 7: Rank-1, Rank-5 and Rank-10 identi cation rates sation noise on MOBIO database evaluation set.

for Protocol 1b on the evaluation set.

20b--------

BIO and SCface, an80 components is used for Multi-PIE.
For the Local GMM-FP approach we use a region size of
4 4for MOBIO and Multi-PIE, andL 2 for SCface. For

=
— 1

HTER \%

i
Qb

3 ISV male

the Local ISV approagh, we use region sizestof 4 for d e L Localsv male

MOBIO, 2 2for Multi-PIE and2 2 for SCface. bbb =-1svfemate
Table 2 shows the performance of the proposed ap- P b i f-¢-localiSViemale

proaches and the baselines. It was found that the Local 2 floise ada percentage of average inter-eye distance - -

ISV approach performs best in all cases except for the SC- _. )

face evaluation dataset, which obtains best performance us.!: \gure 9 Performance of the Local ISV and I.SV face ver-
ing the ISV system. The Local ISV modelling technique i cation systems in the presence of face localisation noise
marginally improves the veri cation performance in ttiev on MOBIO database evaluation set.

set and marginally decreases the performance irettad

This marglnall performance de_gradat.|on is Ilkely due to the error of up to 2%, 5%, 10% and 20% of the average inter-
large block size used?0Q 20) in conjunction with many eye distance

images in the SCface database being up-sampled to have For both the proposed and baseline systems, system per-

an inter-eye distance @3 pixels. The Local ISV system o .
, : . formance degrades as noise increases. At levels of noise up
provides an average relative performance improvement of

0, I . 1 -
32% for the MOBIO and Multi-PIE databases. We also to 20% of the average inter-eye distance the proposed ap

note that the Local GMM-FP system consistently outper- !oroaches outperform their baselines. However, as noise is
. increased abovi0%, the proposed performance of all sys-
forms the GMM-FP system on all three databases, with an : .
L tems degrades considerably (see Figure 8).
average relative improvement &8%, further demonstrat- This incr d dearadation is likel d by the natur
ing the value of a region based approach. The Local ISV ap-of thesre Cioiastsede% ast:mos ?At r?ith?eLi/se(Ts 0%/ no(iaseaaL:\s
proach outperforms the Local GMM-FP system on all three 9 y ) 9

databases, and demonstrates the value in modelling sessiof[ﬁc')'ttr;} :Tai'g‘ég:n” Z'SZGS?, ;?iéz%at|9|_r;su:ft:1h: ;:gimstirglna'tur\]/:t
variability and capturing identity information locally. ) ges sig Y- . P
corresponding regions between the client model and probe

5.3. Evaluation of Face Veri cation Performancein ~ image are modelling the same portion of the face is increas-
the Presence Of Locahsat'on Error Ingly I|ke|y to be violated as noise increases. However this
effect could be mitigated by using fewer regions (Re. 2
The performance of face veri cation in the presence of (ather thamt 4), which would incur a small drop in perfor-

localisation noise is evaluated as outlined in Section 4.3. mance under ideal conditions, but offer greater invariance to
Figures 8 and 9 show the half total error rate (HTER) of the |gcalisation errors.

Local GMM-FP and Local ISV face veri cation systems

and their respective baselines (GMM-FP and ISV) in the g conclusions and Euture Work

presence of increasing levels of face localisation noise on

the MOBIO database. The same systems con gurations as This works shows that state-of-the-art performance can
those in Section 5.2 are used. We evaluate performance abe obtained for sh and face image classi cation through

ve different noise levels: no noise; and with localisation a region based, Local ISV modelling technique. This ap-



System MOBIO (female) | MOBIO (male) SCface Multi-PIE
Dev Eval Dev Eval Dev Eval | Dev Eval

MRH [12] 145 21.9 13.6 13.0 | 28.3 30.3| 48 6.2
GMM-FP 11.5 22.2 7.5 9.9 16.7 16.3| 3.1 3.8
Local GMM-FP | 10.3 20.9 4.8 7.7 157 159| 11 23
ISV 6.7 12.7 4.1 6.2 136 128| 16 2.2
Local ISV 5.2 10.5 25 4.5 120 134| 06 1.1

Table 2: Face Veri cation Results. The MRH results are taken from [12]. Results f@dladata are equal error rates, while
results for theeval data are half total error rates. The best performing systems are shawfdin

proach allows noise (in the form of session variation) to be [3]
modelled locally, while also capturing local identity infor-
mation. For the rst time, we have applied the ISV model
to challenging natural world images of sh to examine the
broad applicability of this technique to the more general ob-
ject classi cation domain, and have shown that the Local
ISV approach outperforms the standard ISV 3826 In

the face veri cation task, the Local ISV technique outper-
forms the standard ISV technique by an averageé28bfor

the MOBIO database and Multi-PIE unmatched illumina-
tion data set. We have shown that the Local GMM-FP sys- [7]
tem also consistently outperforms the GMM-FP system on 8]
all three face databases with an average relative improve-
ment of18%, further demonstrating the value of a region
based approach.

In addition to this, we have evaluated the real-world ap-
plicability of the Local ISV approach to face veri cation in
the presence of face localisation error. It has been shown
that Local ISV outperforms baseline systems at noise lev-[10]
els of up t020% of the average inter-eye distance. Future
work will consider the selection of weights for combining [11]
the region based models, and will investigate approaches to
incorporate features such as colour into the models, which
may be of particular use for classi cation of natural images. [12]
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ABSTRACT
We propose a local modelling approach using deep convolu-
tional neural networks (CNNSs) for ne-grained image clas-
si cation. Recently, deep CNNs trained from large datasets
have considerably improved the performance of object recog- Thalassoma Trilobatum
nition. However, to date there has been limited work using
these deep CNNs as local feature extractors. This partly stems
from CNNs having internal representations which are high di-
mensional, thereby making such representations dif cult to
model using stochastic models. To overcome this issue, we Thalassoma Purporeum Thalassoma Hardwicke
propose to reduce the dimensionality of one of the internal
fully connected layers, in conjunction with layer-restricted re-
training to avoid retraining the entire network. The distribu-
tion of low-dimensional features obtained from the modi ed
layer is then modelled using a Gaussian mixture model. Com-
parative experiments show that considerable performance im- Fried Rice Chicken Rice
provements can be achieved on the challenging Fish and UEC
FOOD-100 datasets.

Index Terms— ne-grained classi cation, deep convolu-
tional neural networks, session variation modelling, Gaussian
mixture models. Ramen Beef Noodle

Thalassoma Quinquevittatum

1. INTRODUCTION Fig. 1. First two rows show example images of four sh species,

Fine-grained image classi cation refers to the task of recogl"’hi‘:h hgve Iqw_inter-clas_s variation: similar visual appearance de-
nising the class or subcategory (for instance the particular sifPIt€ being distinct species. (Images taken by J.E. Randall). The
species) under the same basic category such as bhird or %ﬁSt.tWO rows show images O.f four food dishes, with each dish type
species [1, 17]. This is a challenging task for two reasons. "9 high intra-class variation.
First, some classes (species) from the same category, such ]
as sh, can appear to be very similar in terms of appearance Recently, feature learning through the use of deep con-
leading to low inter-class variation. Second, there is a higiyelutional neural networks (CNNs) has led to considerable
degree of variability in the instances of the same classes dJ@Provements for object recognition [10]. These deep CNN
to environmental and illumination variations leading to highféature representations are trained on large datasets such as
intra-class variation. Fig. 1 shows examples of both issues. 'mageNet [5] which hag;000 general object categories. It

An approach to tackling these two issues is to extract |o_ha_1$ _been sh_own that these learnt featu_rfas can be used to ob-
cal region descriptors and to model them. Such an approa&ﬁ'” impressive results for oth_er recognition tasks when used
has previously been popular for recognition of faces [11, 16fS & global image representation [14]. However, to the best of
and sh [1]. These approaches typically divide the image intd®4r knowledge no work has examined how to use these learnt
patches (or blocks), with each patch considered to be an indggat_ur(_as as a Ioc_al feature extractor for use with well known
pendent (and partial) observation of the object. Each patch f&atistical modelling approaches such as GMMs.
then represented by a feature vector and the distribution of all To use these deep CNN features as a local feature extrac-
of these features vectors, from an image, is then modelled usser two issues need to be addressed. First, deep CNNs such
ing a Gaussian mixture model (GMM). The feature vector toas [10] generally have an internal representation which is high
represent each patch has usually been obtained from a tramimensional, leading to the curse of dimensionality [3] for lo-
form such as the 2D discrete cosine transform [16]. cal modelling techniques such as GMMs. Second, we need

978-1-4799-8339-1/15/$31.00 ©2015 IEEE 4112 ICIP 2015



to develop an ef cient and effective method to retrain a deemare chosen as they have been shown to provide consistently

CNN containing millions of weights using a relatively small good performance [13].

set of images speci c to a ne-grained class. In this paperwe GMM mean-only MAP adaptation takes the prior model

address both of these issues. (UBM) and adapts just the means using the enroliment data
Inspired by recent work that has shown how to optimiseof thei-th classO;; all of the features for thd; enrollment

deep CNN features for small datasets using ne-tuning [17]jmages. Using supervector notation [13], this is written as

we propose a method to obtain a low-dimensional deep CNN si=m+Dz;: (1)

representation that can be used as a local feature descriptor, . . .

Speci cally, we propose to explicitly reduce the dimensionaI-Wheresi is the mean supervector for tmh c!ass,m s the

ity of one of the internal fully connected layers, in conjunc-mea‘.n supervector Of. the UBM (Fhe pr!OIZ); IS a normally

tion with using layer-restricted retraining to avoid retrainingf]IIStrIbUteOI latent variable, anid is a diagonal m‘?“”x that .

the entire network. We demonstrate empirically that the prol_ncorporates the relevaljce fagtor and the covariance matrix

posed approach leads to considerable performance impro nd ensures the result is equivalent to mean-only relevance

: : o ) MAP adaptation.
ments for two ne-grained image classi cation tasks: sh : .
recognition [1] and food recognition [12]. ISV is an extension of the GMM mean-only MAP model

We continue the paper as follows. In Section 2 we brie ywhiCh le.ams a sub-spf’:\ce which models and SUPPrEsses ses-
describe the image classi cation approach based on statist O _varlatlc_)n_[13]. It_mclt_;des a subspatk to cope with
cal modelling of local features and inter-session variabilitysessIon variation and is written in supervector notation as
modelling. The approach is used as a base upon which we Uij = m+ UxXjj + Dz; (2
build on in Section 3, where we learn a low-dimensional deel@vherexi;j is the latent session variable and is assumed to
CNN representation that can be used as local feature descrige normally distributed. Suppressing the session variation
tor. Comparative experiments are given in Section 4, followegs done by jointly estimating the latent variables and
by the main ndings and future directions in Section 5. [Xi:1;::: Xy, ] followed by discarding the latent session vari-
ables to give

2. MODELLING LOCAL IMAGE FEATURES Sisvi =m+ Dz s

Modelling the distribution of local features has been explored For both of these methods, the log-likelihood ratio is used

by several researchers [11, 16, 13]. In general, these methoffsdetermine ifthe-th testimagé ; was mostlikely produced
y classi. This is ef ciently calculated using the linear scor-

divide thej -th image of thei-th class| j; , into N overlap- . o d ;
ping patches. Each patch is represented byiadimensional "9 @PProximation [7] which for GMM mean-only MAP is
feature vector, of low dimensionality, to yield the setNf Ninear (O1;Si)=(si m)" f m (4)
feature vector©;; = [0j; 1;:::;0i;n ]. The distribution

of the vectors is then modelled using a GMM to obtain a prio@nd for ISV itis

model, referred to as a universal background model (UBM), hisy (Ot;Si) =(Sisv:i - m)T 1oy tim - N tUXtjm 5

that represents the basic category in question (eg. sh, fOOd)Where the diagonal matrix is formed by concatenating the

This UBM representation forms the basis which ManYjiagonals of the UBM covariance matricés;,, is the super-

feature modelling methods use. It can be used as a probabili actor of mean normalised rst order statistics, a4d con-
t'.c bag-of-words representatlo_n [15] or a model can be d(E;'ains the zeroth order statistics for the test sample in a block
rived for each class by performing mean-only relevance MA dia | matri
. 2 ) . gonal matrix [13].

adaptation [11]. Another extension is to perform inter-session
variability (ISV) modelling [13] which learns those variations 3. PROPOSED METHOD
that can make one instance (image) of the same class look difo extract features from local patches, we aim to learn a
ferent to another image of the same class. low-dimensional deep CNN representation which we refer

Irrespective of the speci ¢ method they all rely on a GMM to as a low-dimensional CNN feature vector (LDCNN). This
which is known to perform poorly for high-dimensional is in contrast to the high dimensional representatié®96
data [4]. This is partly due to the curse of dimensionalitydimensions) that is usually obtained from the fully connected
where it becomes dif cult to estimate a large number of padayer (fc-6) of the pretrained deep CNN [10], the structure of
rameters when there is limited data. To avoid this we willthis network can be seen in Fig. 2. Such high dimensional
show how to learn a low-dimensional deep CNN representarepresentations are dif cult to be effectively modeled with a
tion, however, before proceeding to this we rst describe thestochastic model such as a GMM, as such we aim to learn a
GMM feature modelling methods that we use in this work. low-dimensional representation (LDCNN) whose dimension-

] ality M is much less tha096 To reduce the dimensionality

2.1. GMM Feature Modelling while preventing the parameters from over tting in the large
We use two feature modelling approaches in this work, GMMCNN architecture, we propose a two step modi cation for the
mean-only MAP adaptation and its extension ISV. These twametwork.
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ture to represent each image. The rst baseline extracts a sin-
H gle global feature vector using fc-6 of the pre-trained deep

CNN [10] (4096dimensions); we refer to this &/M-CNN.
1 <D ’* The second baseline extracts a single global feature vector
ot o2 come ond comes o6 foT-  fos using the re-trained low-dimensional CNN feature (LDCNN)
4096 4096  Class vector; we refer to this aSVM-LDCNN. .
] The local features modelling results (GMM), where the
image is divided intdN overlapping patches, use two feature

extractors. These feature extractors obtaiiVawlimensional
E—@ ] <D feature vector from each of ti¢ patches which is then mod-
_— elled using a GMM. The rstGMM-LDCNN , uses the pro-
conv-1  conv-2  conv-3 conv-4 conv-5 fe-6- fe-7- fo-8- posed low-dimensional CNN feature vector (LDCNN) to ob-

M ClI R . .
4096 Gl ain theM -dimensional feature vector. The seco@MM-

Fig. 2. Modifying and retraining the deep CNN through a 2 stepPCA-CNN, uses fc-6 pre-trained deep CNN [1@J006 di-
procedure. For each step we have shaded in green the parts of thensions) and learns a transform using principal component
network that are changed and retrained. First step: the highlightegnawsis (PCA) [6] to reduce the dimensionalityMa

fc-8 layer is modi ed to have only as many outputs as the number When we perform local feature modelling (GMM) a range
of dataset speci c classes. The layer is retrained, while all the othe6f parameters are varied. The number of components evalu-

parameters remain xed. Second step: the highlighted fc-6 layer is _ ! : ! .
changed to map to onlyl outputs, followed by training the fc-6 ated for the GMM weree =[128, 256,512, 1024} the size of

layer in conjunction with the highlighted fc-7 layer, while keeping the ISV subspace wasé, =[2; 4;8;:::;256], and the range of
the remaining parameters xed. The output of the fc-6 layer is used/OCK SizesB =[32;64;96; 128]. For both datasets the images
as a local feature extractor. were resized to be56 256. Caffe [8] was used to extract
and retrain the CNN features and Bob [2] was used to learn

. . the GMM and ISV models.
In the rst step, using the pretrained network of [10] as a

starting point, we modify the nal output layer (fc-8) to have 4.1. Fine-Grained Fish Classi cation

outputs for theN training classes. The weights are randomly L ) .
initialisect and retraining is then conducted such that onlyVVe use the Fish image dataset from [1] which consists of
the fc-8 layer is updated using a learning rate0fl. This 3 960 Images collected from68 species. This dataset con-

process equates to a multiclass linear regression, using tins images captured in different conditions, de ned as “con-

pretrained network as a feature extractor. It converges afteri&lléd”, “out-of-the-water” and “in-situ”. The “controlled”
few thousand iterations. images consist of sh specimens with controlled background

In the second step we replace the two fully connected |ayand illumination. The “in-situ” images are underwater images

ers fc-6 and fc-7 and retrain only these two layers with the?f Sh in their natural habitat and the “out-of-the-water” im-
other layers xed. We replace the origingdosdimension fc- ages consist of sh specimens taken out of the water with a

6 layer with a newM -dimensional fc-6 layer that is randomly Varying background.

initialised', whereM 4096 Features extracted from this  Following the de ned protocols, the dataset is split into

layer are referred to as LDCNN. The fc-7 layer is also reN"€€ Sets: a training setrdin) to learn/derive UBM GMM

placed and randomly initialiséds fc-6 and fc-7 are densely Medels; a development sete() to determine the optimal pa-

connected. However. when we retrain the network. fc-7 refameters and decision threshold for our models and an evalua-

tains its original dimensionality 0096 Retraining is then ion setéva) to measure the nal system performance. There
performed using back propagation and stochastic gradient g€ two protocols: protocol 1a evaluates the system perfor-
scent to update only these two layers. The learning rate i&ance when high quality (*controlled”) data is used to en-
initially set to0:01 but this rate reduces by a factor 11 for rol classes and protocol 1b evaluates the system performance

every1000iterations throughout training process. In this way, When low quality (“in-situ”) data is used to enrol Slasses. Fc:r
all pretrained convolutional layer Iters from the original net- POth protocols, the same test imagery (a mix of “controlled”,
work [10] are retained. “in-situ” and “out-of-the-water” images) is used. The local

modelling approach used for these experiments was the ISV

4. EXPERIMENTS extension of the GMM approach as this provided a consid-
We evaluate our approach on two ne-grained image dataset :rat')\llel_%)g;tl\for the initial experiments; we refer to this as

Fish [1] and UEC FOOD-100 [12]. For both datasets we

present two baseline systems, both of which perform classi- I_t has been shown in [1] that incorporating spatial infor-
cation using an SVM and extract a single global CNN fea- mation can be advantageous, and as such we further propose
to extend the GMM-LDCNN approach by adding the spatial

1 Random initialisation is performed by drawing frdsh 0;0:012 . location(x;y) to each local feature vector prior to modelling;
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CHAPTER 3.

INTER-SESSION VARIATION MODELLING




Chapter 4

Hierarchical Reasoning for Fine-Grained

Classi cation

As discussed in chapter 3, the classes are often similar in terms of shape, colour and texture
because they belong to the same overarching category (eg.birds). In the previous chapter, the
proposed local ISV algorithm is able to distinguish similar looking sub-categories ( sh) by
modelling local parts. However, it assumes that all images are well aligned with minimal pose
and viewpoint variation. Furthermore, the capacity of the session variation modelling method
heavily relies on the number of Gaussians in each class model and it is scale-variant because of
the xed size of the local patches being extracted from images. Unfortunately, such an approach
is dif cult to translate to other ne-grained problems when the objects' photos are taken in
natural environments with large pose and scale variations. One example is bird classi cation
where bird images are taken with various poses such as ying, walking and swimming. In
this chapter we explore the second research question “Can we learn robust and discriminative

features in order to classify ne-grained classes which have small inter-class variations?” .

This chapter looks at two aspects. The rst aspect is to divide the classds istdsets of
visually similar classes; an expert classi er is then learnt for each subset. The second aspect uses
the same subset of visually similar classes and, instead of learning an expert classi er, learns
discriminative features for each subset using DCNNs. The Both approaches can be applied on
top of any explicit parts modelling methods such as DPD [Zhang et al., 2013a]. This subset pre-
clustering method can be illustrated as a two layer hierarchical structure. Each subset serves as

a node and each speci c class is a leaf.
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58 CHAPTER 4. HIERARCHICAL CLUSTERING FOR FINE-GRAINED CLASSIFICATION

Our proposed hierarchical structure operates in a fully automatic manner and can be used
for various ne-grained classi cation tasks. On the challenging CUB200-2011 bird dataset,
we show that considerable performance improvements can be achieved with our proposed
approach. The mean accuracy increases from 60.5% following the baseline global approach
of Donahue et al. [2014], to 71.4% for the hierarchical classi er approach when ground truth
cluster labels are used. The fully-automatic system can achieve an accuracy of 68.6%. This
is a substantial performance improvement and highlights the potential bene ts that are pos-
sible when an hierarchical approach is used. It is important to note that without using parts
information, we still achieved impressive results compared to those methods using a parts-
based model [Berg and Belhumeur, 2013, Chai et al.,, 2013b, Donahue et al., 2014]. The
hierarchical feature learning approach reaches 77.5% on CUB200-2011. We also applied to
the plant classi cation problem on the PlantCLEF dataset. Our approach won second place in
the PlantCLEF 2015 competition.

These two approaches provide considerable improvements in performance but their accu-
racy is limited by the accuracy of assigning a class to its correct subset. In the next chapter we

extend this work by probabilistically assigning the responsibility of producing each sample.

“Fine-Grained Bird Species Recognition via Hierarchical Subset Learning” was presented
at the 2015 International Conference on Image Processing, “Subset Feature Learning for Fine-
Grained Category Classi cation” was presented at 2015 Computer Vision and Pattern Recog-
nition Deep Vision Workshop and “Content Speci ¢ Feature Learning for Fine-Grained Plant
Classi cation” was published as a working note at the 2015 International Conference and Labs

of Evaluation Forum.
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ABSTRACT

We propose a novel method to improve ne-grained bird

species classi cation based on hierarchical subset learning.

We rst form a similarity tree where classes with strong vi-

sual correlations are grouped into subsets. An expert local ) :

classi er with strong discriminative power to distinguish vi- 32‘;?:“ gﬂggom csafgﬁte 82";52" Q:fsrg?tn 3:32;(3
sually similar classes is then learnt for each subset. On the

challenging Caltech200-2011 bird dataset we show that using

the hierarchical approach with features derived from a deep

convolutional neural network leads to the average accura
improving from64:5% to 72:7%, a relative improvement of
12:7%.

cI¥ig. 1. One subset of the similarity tree of Berg and Bel-
humeur [2], built from the visual similarity matrix based on
part-based one-vs-one features [3]. Species from the same

Index Terms— ne-grained classi cation, subset cluster- node (eg. oriole) appear very similar to each other in terms of
ing overall color and texture.

1. INTRODUCTION

Fine-grained image classi cation is a challenging computeft© subsets, which in turn was used to help derive a vi-
vision problem. Distinct from general object classi cation Sual eld guide. However, the application of the similarity
which aims to nd the correct overall category such as a bird€€ to automatic classi cation for bird images has not been
or dog, ne-grained image classi cation aims to identify the €xplored.
particular sub-category of a given category [1, 13, 14]. As Inspired by the similarity tree of Berg and Belhumeur, we
an example, for an overall category lnifd we wish to dis- Propose a hierarchical approach for ne-grained image classi-
criminate between various sub-categories with similar appearcation. Our hierarchical approach begins by clustering visu-
ance, as shown in Fig. 1. In fact, bird classi cation is anally similar classes before learning separate expert local clas-
area of particular interest within ne-grained image classi - Si ers which focus on discriminating the similar classes.
cation [3, 5, 7, 8]. As a baseline for bird classi cation, we use the recently
Recent work in bird classi cation has concentrated on thegproposed deep convolutional feature approach of Donahue et
issues of pose and view-point variation by nding local partsal. [6]. This approach rst performs part detection and pose
or extracting normalised features. Several authors have examermalisation, followed by extracting local features. The part
ined ways in which locating the parts of the birds (and othedetection and pose normalisation is achieved by using the de-
animals) can be used to improve classi cation [4, 5, 14]. Ex-formable part descriptors model [18] on local parts which
tracting pose-normalised features has been another populaave been extracted using a pre-trained deep convolutional
approach [18] and is the basis for the deep convolutional birdeural network (DCNN) learned from ImageNet [12]. Fea-
classi cation system of Donahue et al. [6]. tures obtained from the 6-th layer (fc-6) of the DCNN are
Aside from the issue of pose and view-point changesysed which are then classi ed using a linear regression ap-
a major challenge for any ne-grained classi cation approachproach.
is how to distinguish between classes that have high visual The paper is continued as follows. In Section 2 we present
correlations. In Fig. 1 it can be seen that timoded oriole  our proposed hierarchical classi cation system in detail. Sec-
andbaltimore oriolespecies are visually very similar, but can tion 3 is devoted to a comparative evaluation with several re-
be easily differentiated from thislack throatespecies. This cent methods on the task of ne-grained bird classi cation.
visual similarity was exploited by Berg and Belhumeur [2] Conclusions and possible future avenues of research are given
to build a similarity tree that divides visually similar classesin Section 4.

978-1-4799-8339-1/15/$31.00 ©2015 IEEE 561 ICIP 2015



2. PROPOSED HIERARCHICAL CLASSIFICATION

Our proposed approach to hierarchical ne-grained image

classi cation consists of two steps. First, the system per-

forms a coarse classi cation to assign the test sample to the S
most likely subsek using asubset selectoiEach subset con-
sists of visually similar species; the subsets are automatically
generated using a similarity tree. Secondly, if the con dence
of thesubset selectds suf ciently high, for each chosen sub-
setk, ne-grained classi cation is performed using a local
classi er LocalSVM.. EachLocalSVM has been trained to
differentiate between the visually similar species belonging to
this subset. If the con dence is low, a one-vs-@lbobalSVM
classi er is used. An overview of the system can be seen in
Fig. 2. The details of each component are explained in the
following subsections.

If Low Conbdence If High Conbdence

2.1. Automatically Obtaining the Similarity Tree

There are two main issues with using the similarity tree of
Berg and Belhumeur [2] to derive our hierarchical structure.
First, it has a deep hierarchical structure of uplilayers

and in this work we wish to explore the potential for a shal-
low structure of jus layers. Second, we want to generate _

the hierarchical structure in a fully automatic manner. In conf19- 2 An overview of the proposed hybrid system (the

trast, the similarity tree in [2] is learned from features ob-97€€N Stars are test samples for class A). A testimage is rst

tained from manual part annotation which may not always bé‘,oarhselyl cIa_SS| e_d mt:; isubseé, and _re(r:]_el\;]es e;]con dence
possible or desirable. on the classi cation. If the con dence is higher than a pre-

Our aim is to derive a similarity tree that groups all of '[heOle ned threshold, a local classi drocalSVMspeci ¢ to the

J; samples of classto the same subset (cluster), as well aschosen subset is used to make the nal decision. Otherwise,

grouping together similar classes. To do this we rst obtain® or_1e_-vs-a|| SVM (terme@lobalSVMN) is used to make the
discriminant features by applying linear discriminant analysi ecision.

(LDA) [15] to DCNN-based features (see Section 3 for more

details). We use discriminant features as they will aid in hav-

ing samples from the same class being assigned to the sarsist of all the training samples for thg classes and the neg-
subset (cluster). Using these discriminant features we theative samples are the remaining training samples.

learn the similarity tree by performirigmeans clustering. In total, K subset selectorSelector.« are trained, one

An issue with this automatically derived similarity tree is for each subset of the hierarchical structure. These subset se-
that not all of the samples from a class are assigned to jugéctors are trained using a probabilistic SVM as this provides
one cluster (subset). To deal with this issue we use the rehe probability that a sample belongs to a particular subset.

sult of k-means as an initial split of classes into subsets. Werhjs allows us to mitigate potential errors by incorporating
then determine the subsst which contains the majority of - this knowledge in the next step.

its samples for each clasand declare this as being the subset

responsible for that class. Using this assignment of classes to

subsets, we then learn a discriminatbuédset selectago that

we can more accurately assign a sample to its correct subse2.3. Local Expert Classi er Learning

22 Subset Selectors Let S = fscgk,, denote theK subsets learned by the hi-
erarchical clustering. An expert classi er (SVM) is then

We train a discriminative subset selector to minimise the numlearned for each subsgt which we termLocalSVM.. Each

ber of mis-assignments of species to its subset.KFtfesub-  LocalSVM is a linear multi-class SVM. This is different

set is assignel classes, and so the subset seleB&lectof  to the classical one-versus-all approach because only the

is trained to correctly assign all the samples from thigse | classes assigned to the subset are used to trainleach

classes. The positive samples to train the subset selector caralSVM
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2.4. Hybrid Decision System Proposed Method
—— Baseline (DPD-DeCAF) |

The accuracy of the proposed system is dependent on the ¢ 74
curacy of the assignment of a test sample to the correct subsg
of our hierarchy. If the wrong subset is chosen then we hav§
no way to recover and a mis-classi cation will occur. To al-
leviate this issue, we present a hybrid decision system whic
makes use of the classical global classi &obalSVM as
well as our local classi erl.ocalSVM

Our hybrid decision system makes use of the probabil™ es
ity from the subset selector to combi@obalSVMand the
LocalSVM It uses the locally trained classi eLgcalSVM) 43486 7 8 9 1011 12 13 14 15 16 17 18 10 20 21 22 23 24 25
only when the con dence of the subset selector is greater tha.. Number of Subsets

a pre-de ped thr(.ashold..ln all othgr cases the classicalob- Fig. 3: Performance of the proposed method on the Caltech-
alSVMtrained with all birds species is used to make the clasy;~sp cUB200-2011 bird dataset. while exploting part an-
si cation decision. notations. The number of subseks§)(is varied from 2 to 25.
The subsets are selected automatically. Performance of the
3. EXPERIMENTS baseline system DPD-DeCAF [6] is also shown.

~
o

[o2]
©

Classification Accu

We evaluate our approach on the Caltech birds datasghple 1: Accuracy of various systems on the Caltech-UCSD

(CUB200-2011) [17]. It contains 11,788 images from 200cuB200-2011 bird dataset, exploiting part annotations.
bird species in North America. Each species has approxi-

mately 30 images for training and 30 for testing. Each image Methpd _ Accuracy
comes with an annotated bounding box around the object of Pooling feature learning [11] 38.9%
interest (the bird), as well as annotations for many constituent Symbiotic Model [5] 59.4%
parts of the object. POOF [3] 56.9%
The feature vectors that we use throughout our experi- Part transfer [9] 57.8%
ments are the DCNN features (DeCAF) trained from Ima- DPD-DeCAF [6] 64.5%

geNet [12]. We ne-tune these features, using Caffe [10], Proposed methodautomatic subset =8) 12.7%

for the task of bird classi cation by replacing the nal out- _Proposed method (ground truth subskts8)  78.6%

put layer (for thel; 000classes of ImageNet) with a 200 class

layer for bird species. We then retrain the entire network us-

ing the training samples for the 200 bird classes with a learnlable 2 As per Table 1, but instead of using part annotations,

ing rate of0:01%. only bounding box information is used.

The experiments are divided into two part§) perfor- Method Accuracy
mance of the proposed hierarchical approach for varying Bounding Box [16] 53 3%
number of subsets, an@) performance comparison of the Bounding Box-aug [16] 61.8%

proposed system against several recent algorithms. Based Ofbroposed method(automatic subset®, =14)  68.6%
preliminary experiments, the threshold for con dence of the

subset selector is set to= 0:98for all experiments.

We rst evaluate the performancei of t_h? .p.r.o.posed SysteMye 2 only bounding boxes are used. It can be seen that in Ta-
by varying the number of subseis = [2;3;:::725] The e 1 the proposed method (using the optiftak 8) leads to

results are presented in Fig. 3, along with the performance of .o|ative performance improvement 7% over the base-

the baseline system DPD-DeCAF [6]. The performance Ofi,e ppp-DeCAF system. When ground-truth labels are used
the proposed system generally increases #nti 8, reach-

; e ; ; for the subset selector, the proposed system can increase its
ing 72:7%. For higher values oK (ie. more subsets), the ,qrtormance fronv2:79% to 78:6%: This indicates that if the

performance tends to decrease in a non-monotonic ManNeje formance of the subset selector can be improved, we can
indicating that relatively large values Kf are not necessarily ¢, ther improve the performance of the overall system.
helpful. A visualisation of the classes assigned to each subset In Table 2, where only bounding boxes are used in-

s givenin F.'g' 4. . . stead of parts annotations, the best performance by the pro-
Comparisons against other methods are shown in Tablesp]Osed method is obtained it = 14. The proposed method
and 2. In Table 1 parts annotations are exploited, while in Taz  hieves an accuracy 68:2% compared t61:8% obtained
1This rate decreases by a factordfevery’; 000 iterations for atotal of ~ PY @ qon\{olutional_ neural network methOd presented in [16],
20; 000 iterations. resulting in a relative performance improvemenigf0%.
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Subset 1

Subset 2

Subset 3

Subset 4

Subset 5

Subset 6

Subset 7

Subset 8

Fig. 4. Example images of 10 classes for each of the subsets for the best performing s¢ste®)( It can be seen that the
classes assigned to each subset are visually similar.

4. CONCLUSION test samples to their correct subset) achieves a classi ca-
tion accuracy of78:6%, which is considerably better than
In this paper, we have introduced a novel direction to tackléhe 72:7% of the fully automatic system. This implies that
the problem of ne-grained classi cation. We have proposedperforming more accurate assignment of a sample to its sub-
the use of a hierarchical classi er so that classes that havget can yield considerable performance improvements. One
high visual correlations are grouped together into the sameossible approach to obtain more accurate assignment would
subsets. An expert classi er is then learnt for each subset. be to learn visual features that best differentiate the subsets
The novel hybrid hierarchical classi cation system yields rather than all of the classes.
performance improvements over the recent deep convolu-
tional neural network system proposed in [6]. This hybrid
approach combines the classidalobalSVM classi cation
approach with a noveLocalSVM classi cation approach.
Evaluations on the challenging CUB200-2011 dataset [17Acknowledgments
show that classi cation accuracy for a fully automatic system
can be increased fro®4:5% to 72:7%, a relative improve- The Australian Centre for Robotic Vision is supported by the Aus-
ment of12:7%. tralian Research Council via the Centre of Excellence program.
Future work will examine ways to close the gap betweerNICTA is funded by the Australian Government through the De-
the performance of the automatic system and the performangartment of Communications, as well as the Australian Research
of the ground truth system. The ground truth (assigning alCouncil through the ICT Centre of Excellence program.
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Abstract der to overcome the issues of pose and view-point varia-
) ) L . tion[5,7,20,27,9]. Aside from the issue of pose and view-
Fine-grained categonsanon hag F’ee” a ghallenglng point changes, a major challenge for any ne-grained classi-
problem due to small inter-class variation, large intra-Class “¢44ion approach is how to distinguish between classes that
variation and low number of training images. We pro- 5,0 high visual correlation8]| Some state-of-the-art pose

plose a Iea:jmr;]g S3|/Stem "(‘j’h'Ch rst ClLl’St,erS \lllsuallyl S'm'larknormalised methods still have considerable dif culty in cat-
classes and then learns deep convolutional neural networ egorising some visually similar ne-grained class2s, [6].

features speci ¢ to each subset..Experlments on the popu- ~r, date, there has been limited work which investigates
lar ne-grained Caltech-UCSD bird dataset S.hOW that the_ in detail how best to learn deep CNN features for the ne-
pro_posed method outperforms repent ne-_gra.lned CategF’”' grained classi cation problem. Most of the methods used
sation methods under the most dif cult setting: no bounding J¢ +ho_shelf convolutional neural networks (CNNs) fea-
boxes are presented at test time. It achieves a mean aCCUs s trained from ImageNet or ne-tuned the pre-trained

racy of 77:5%, compared to the preViOL.JS best performar_lce ImageNet model on the target dataset, then using one fully-
of 73:2%. We also show that progressive transfer learning connected layer as a feature descripid p2).

allows us to rst learn domain-generic features (for bird This paper examines in detail how to best learn deep
classi cation) which can then be adapted to speci ¢ set of o\ features for ne-grained image classi cation. In do-
bird classes, yielding improvements in accuracy. ing so, we propose a novelibsetiearning system which

i rst splits the classes into visually similar subsets and then
1. Introduction learns domain-speci ¢ features for each subset. We also

Deep convolutional neural networks (CNNs) have been comp_reh(_ensively investiggte progrgssive tr_ansfer learning
successful in various computer vision tasks. Deep CNNs2and highlight that rst |earning domain-generic features (for
have achieved impressive in both genett8, [22, 9] and blrd classi catlo_n) using a Iarge_ dataset and_ then adaptlng
ne-grained image classi cationZ6, 13]. Recently, deep this to the speci c task (target bird dataset) yields consider-

CNN approaches have been shown to surpass human pe@Ple performance improvements.

formance for the task of recognising 1000 classes from the

ImageNet datasetf]. Although deep CNNs can serve as 2. Related Work

an end-to-end classi er, they have bet_en used by_r_nany re-5 1 Convolutional Neural Networks

searchers as a feature extractor for various recognition prob-

lem including segmentatiori§] and detection14]. Krizhevsky et al. 18] recently achieved impressive per-
Recently, the task of ne-grained image categorisation formance on the ImageNet recognition task using CNNs,

has received considerable attention, in particular the taskwhich were initially proposed by LeCun et al.9] for hand

of ne-grained bird classi cation 26, 3, 7, 10, 12]. Fine- writing digit recognition. Since then CNNs have received

grained image classi cation is a challenging computer vi- considerable attentior2p, 14]. The network structure of

sion problem due to subtle differences in the overall appear-Krizhevsky et al. 18] remains a popular structure and con-

ance between various classes (low inter-class variation) andsists of ve convolutional layerscpnvl to convs) with two

large pose and appearance variations in the same class (lardelly-connected layersf¢ 6 andfc 7) followed by a soft-

intra-class variation). max layer to predict the class label. The network is capa-
Much of the work for ne-grained image classica- ble of generating useful feature representations by learning

tion has dealt with the issue of detecting and modelling low level features in early convolutional layers and accu-

local parts. Several researchers have examined methodmulating them to high level semantic features in the latter

to nd local parts and extract normalised features in or- convolutional layersZ9)].
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tor (termed gcnn ) from a large-scale dataset of the same
domain as the target dataset. Second, we perform subset-
speci ¢ feature learning from pre-clustered subsets which
contain visually similar ne-grained class images. The dis-
criminative convolutional features learned from the subset
learning system is termedF CNN , and the related fea-
ture extractor is referred a$rcnn -
For image |, we apply the gcnn (1) and

prenn (17) and combine them to obtain our feature vec-
tor to describe the image. For training the classi er, we
employ a one-versus-all linear SVM using the nal feature
representation.

3.1. Progressive Transfer Learning

It is desirable to have as much as data possible in order
to avoid over tting while training a CNN. A typical CNN
has millions of parameters which makes it dif cult to train
when data is limited. Typically ne-grained image datasets
are relatively small compared to the ImageNet dataset. To
circumvent problems with small datasets, a process known
as transfer learning2d] can be applied. Transfer learning
has usually been applied by ne-tuning a general network,
such as the network of Krizhevsky et alg], to a speci c
task such as bird classi catior2]. Recent work by Yosin-

Figure 1. Birdsnap is a very challenging ne-grained bird dataset ,Sk' etal. p4 f",“”‘?‘ that better ac;uracy can be aChlevgd
with sexual as well as age dimorphisms. There are considerabld! transfer learning is performed using datasets representing
appearance differences between males and females, as well as b&1€ same or related domains.

tween young and mature birds. Each row shows images from the  Inspired by the ndings of Yosinski et al2§], we pro-
same species. For each bird species there are large intra-class varpose an alternative approach where a generic CNN is pro-
ations: pose variation, background variation and appearance vari-gressively adapted to the task at hand. First, a large dataset,

ation. which is related to the same domain as the nal task, is used
to perform transfer learning. This yields a domain-generic
2.2. Features for Fine-grained Classi cation feature representation. Second, a smaller dataset which rep-

resents the nal task at hand is used to adapt the domain-

Several approaches have been designed to learn featurgeneric features to yield task-speci ¢ features. Our experi-
representations for ne-grained image classi cation. Berg mental results show that progressive transfer learning yields
et al. 3] generated millions of keypoint pairs to learn a set feature representation which lead to consistently improved
of highly discriminative features. Zhang et 7] learned  performance. Furthermore, we will show that the domain-

pose normalised features by using the deformable part degeneric features can also be used effectively for the task at
scriptors model (DPM)11] on local parts which were ex-  pand.

tracted using a pre-trained deep CNN. Chen et&Ipfo-
posed a framework to select the most con dent local de- 3.2. Subset Speci ¢ Feature Learning
scriptors for nonlinear function learning using a linear ap-

proximation in an embedded higher dimensional space. i .
The above feature learning schemes are implicitly part- good performance on the Caltec_h_UCS_D bird d?‘tm [ :
The methods are good at recognising birds species with dis-

based methods. This means they require the ground truth. ™ . . L
. oo : ; inguishable features with moderate pose variation. How-
locations of each part which limits their usefulness in terms . S . .
ever, many mis-classi cations occur for birds species that

of fully automatic deployment. o .
have similar visual appearance.
3. Proposed Method . To addres_s thls issue, we propose to pre-clustgr visually
similar species into subsets and use subset-speci ¢ CNNs.
Our proposed feature learning method consists of two Instead of relying on one CNN to handle all possible cases,
main parts. First, we perform progressive transfer learn- each CNN focuses on the differences within each subset.
ing to learn a domain-generic convolutional feature extrac- In effect, the overall classi er has more parameters, as all

Recent parts-based ne-grained methods show relatively
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Figure 2. Pre-clustered visually similar images are fed into
DFCNN 1.k with backpropogation training to learn discrimi-
native features for each subset.

CNNs have the same network architecture. Due to the prac-
tical issues such as training time and memory requirements(c)
using separate CNNs dedicated to speci c tasks is more
practical than having one very large CNN. An overview of
this subset learning scheme is shown in Rig.

The above subset feature learning process is initially per-
formed on a large yet related dataset. In particular, we userigyre 3. Pre-clustering results usinga) convs layer features,
the large Birdsnap datasef instead of the target Caltech-  (p)fc 6 layer features(c)lda fc 6 features. Clustering vieonvs
UCSD datasetd3]. We expect that our learned features yields undesirable strong correlations with pose and shape infor-
are both generalised and discriminative compared to fea-mation. Using c 6 yields some improvements, but the pose bias is

tures learned directly on the same size or smaller size targestill visibly present. Usindda fc 6 provides further clustering
dataset under the same domain. improvements in terms of robustness to color and pose variations.

3.2.1 Pre-clustering represent right and left pose of birds images while the rest

To generate subsets in terms of visually similar images, € grouped into cluster 3. We conjecture that this is due to

image representations should focus on colour and texturdhe convolutional based features containing a high degree of

while being robust to pose and background variations. We SPatial information. Usindic 6 yields some improvements,

investigate three types of features as image representerdut the pose bias is still visibly present. Usik  fc6

Features are obtained from either the 5-th lay@nvs or features provides further clustering improvements in terms

the 6-th layer {c 6) of the CNN. These were selected due Of robustness to colour and pose variations.

to their recent use by other researchers to perform object

repognition and F:Iusteringpl. We also apply linear dis- 355 gypset Feature Learning

criminant analysis (LDA) 21] to fc6 features to reduce

their dimensionality. This is done to ameliorate the well A separate CNN is learned for each of tkepre-clustered

known issues of clustering high dimensional ddth [The subsets. The aim is to learn features for each subset that

subsets are then obtained Waneans clustering. will allow us to more easily differentiate visually similar
Examples of clustering results using the three feature species. As such, for each subset, we apply transfer learn-

types are shown in Fig. The fully connected layer based ing to the CNN of Krizhevsky et al.1] (whose struc-

featurefc 6 ts our criteria better than clustering using the ture was described in Secti@). To train thek-th subset

the convolutional featureonvs that tends to learn shape (Subset) we use theNy images assigned to this subset
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associated last fully connected layer is set to the num-
ber of classes in each subset. Transfer learning is then ap
plied separately to each network using backpropogation and
stochastic gradient descent (SGD). We then fal&to be

the learned subset featurgecnn | for thek-th subset.

DFCNN 2 DFCNN K
3.3. Fine-grained Classi cation

To predict test labels for an imade, our classi cation
pipeline combines thegenn (11) feature with thek sub-  [CoRN | < | [ ©s | I
set features prenn 4. (1) A max voting rule is used 1] \J \J
to retain only the most relevant subset-speci ¢ feature. The | Max Vote vith W | [ es |
otherK 1features are set@ S,ee Fig4 for aconcgptual . Figure 4. Feature representation of the test image is the con-
representation. To balance weights for the doma'n'gener'ccatenated features from both DFCNN with weighting factors and
and subset-speci ¢ features, boBCNN andDFCNN GCNN.
features are thek2 normalised before combining them into
a single feature vector. Using this feature vector, we train a .
one-versus-all linear SVM in order to make predictions.  4- EXperiments

. In this section we present a comparative performance
3.3.1 Max Voting DFCNN evaluation of our proposed method. We conduct experi-
The nal feature representation for imagds the concate- ~ Ments on the Caltech-UCSD dataszg][ which is the most
nation of generalised features obtained frogenn (1) widely used benchmark for ne-grained classi cation. We
and theK subsets prenn L. (1). However, sometimes train the model using ImageNet§| and recently released
an image is more relevant to one subset features than other$irdsnap dataset].
For example to extract features for a White Gull image, itis ~ ImageNet consists of 1000 classes with approximately
more reasonable to uEsF CNN features from the subset 1000 images for each class. In total there are approximately
which has many relevant white birds. 1.2 million training images.

To emphasise the most relevabF CNN , we rst Caltech-UCSD contains 11,788 images across 200
learn asubset selectorto select the most relevant sub- SPecies. Birdsnap contains 500 species of North American
set (rank 1) to the image. Max voting is then used to Pirds with 49,829 images. Examples are shown in Eig.
retain the feature from the most relevant subset and theBirdsnap is similar in structure to Caltech-UCSD, but has
remainingk 1 subset features are set @ One way several differences. First, it contains overlapping 134
to interpret the max voting is to gse tisebset selector species and four times the number of images than Caltech-

to learn a binary vectow, where iK_l wi = 1. The UCSD. Second, there is strong intra-variation within many
nal subset feature representation is thBECNN = species due to sexual as well as age dimorphisms. There
Wi prenn L (Xi);1i5 Wik prenn « (Xi)].  We explore  are considerable appearance differences between males and
two ways to learn theubset selectar females, as well as between young and mature birds.

The simplest way of learning theubset selectoris to We use the implementation of LDA arkdmeans from

use the centroids from the pre-clustering; we refer to this the Bob library P]. The open-source package Caffer]
asCeny..x . This provides a simple classi er trained in IS used to train and extract CNN features. We ldse
an unsupervised manner, however, given the importance of C 6 layer features to pre-cluster subsets 406 features
this stage we explore the use of a discriminatively trained for classi cation.
classi er using a CNN.

Another way to select the most relevant subset is to train
a separate CNN based subset seleStGNN . Using the
output from the pre-clustering as the class labels, we learn The CNN model architecture is identical to the model
a new SCNN by changing the softmax layfer8 to have used by Krizhevsky et al1B]. We ne-tune the CNN model
K outputs. The softmax layer now predicts the probability by using training images from the ground truth bounding
of the test image belonging to a speci ¢ sub&atbsef, box crops of the original images. The resultant cropped im-
max voting is then applied to this prediction to choose the ages are all resiz&tP7 227. During test time, ground truth
most likely subset. As with the previously trained CNNs, bounding box crops of the test images from Caltech-UCSD
the weights oSCNN are trained via backpropogation and are used to make predictions.
SGD using the network of Krizhevsky et alq] as the start-
ing point.

4.1. Evaluation of Transfer Learning for Domain-
Generic Features

49



Table 1. Mean accuracy of transfer learning on the Caltech-
UCSD bird dataset (bounding box annotation provided). Steps
represents the number of training stages.

We conducted 3 sets of experiments for transfer learning:

1. The rst experiment used all of the data from Bird-

shap (500 species) to perform large-scale progressive Method Steps  Mean Accuracy
feature learning. All species (500)

2. In the second experiment we removed those species IN-rt 1 58.0%
in Birdsnap and Caltech-UCSD that overlapped. This CUB-rt 1 11.4%
allows us to examine the potential for learning domain ~ BS-1t 1 44.8%
features that are not speci c to the task at hand.

IN-CUB-ft 2 68.3%

3. In the third experiment we explored the impact that IN-BS-ft 2 70.1%

including the overlapping species has on the transfer [IN-BS-ft-CUB-ft 3 70.8%

learning process.

Non-overlapping species (366)

We use the following acronymsIN represents using IN-BS-ft 2 67.7%
weights from the pre-trained ImageNet model. We de- |N-BS-ft-CUB-ft 3 70.5%
ne rt as retraining the network from scratch with random
initialised weights. ft refers to ne-tuning the network. Overlap (134) + Random (232)

For exampleN-CUB-ft means ne-tuning the ImageNet IN-BS-ft 2 69.5%

model weights on the Caltech-UCSD bird dataset. Ima-
geNet dataset is representedldswhile Caltech-UCSD is

CUB, and Birdsnap i8S. An obvious issue that is not addressed in this rst exper-

iment is that there are overlapping species in Birdsnap and
Caltech-UCSD. To evaluate the impact of this we perform
In this experiment we used all images (500 species) fromtwo more experiments.

Birdsnap to explore large-scale progressive feature learning.

We exclude those images that exist in both Birdsnap and the4 1.2 Transfer Learning: Experiment II

Caltech-UCSD datasets.

The rst three rows of Tabld show the accuracy when Next we investigate transfer learning features from non-
the CNNs are trained from scratch. In this setting ket overlapping classes between two bird datasets. We ne-tune
system, the pre-trained network generated by Krizhevsky etthe pre-trained CNN using those species from the Birdsnap
al. [18] on ImageNet, performs the best with a mean accu- dataset that do not overlap with Caltech-UCSD. There are
racy of 58:0%. Interestingly, theBS-rt system has a con-  134species that overlap and so we only 66 species for
siderably higher mean accuracy 4£8% when compared  this experiment.

4.1.1 Transfer Learning: Experiment |

to CUB-rt which has a mean accuracy b1:4%. We be- As can be seen from the second part of the Table.
lieve that this indicates that the Birdsnap dataset has almosthe result of transfer learning on Birdsnap in this setting is
enough data to train a deep CNN from scratch. slightly worse with a mean accuracy &f:7%. However, if

Transfer learning offers a way to mitigate the lack of suf- we perform progressive feature learning by learning on the
cient domain data. As such, we performed transfer learn- target datasetiil-BS-ft-CUB-ft ) we obtain a mean accu-
ing by ne-tuning the pre-trained CNN. We did this using racy of70:5%. This is only0:3% worse than if we used all
just the Caltech-UCSD (target) datasstCUB-ft or the of the Birdsnap data and demonstrates the effectiveness of
Birdsnap (domain speci c) dataskiN-BS-ft. progressive feature learning.

Somewhat surprisingly, training on the target dataset
(IN-CUB-ft) provides a lower mean accuracy 683% 4.1.3 Transfer Learning: Experiment Il
when compared to using the domain speci ¢ data#gt (

BS-ft) which has a mean accuracy 89:1%. Performing In this experiment we show the importance of overlapping
progressive feature learning on tid-BS-ft CNN leadsto  classes for learning domain-generic features. In order to
further improvements achieving a mean accuracy®8% investigate if the overlapping classes play a key role to

(IN-BS-ft-CUB-ft ). These two results demonstrate the po- learn domain-generic features, we ne-tuned the ImageNet
tential for learning domain-generic featurdbl{BS-ft) as model again with134 overlapping species an2i32 ran-

well as progressive feature learning to perform effective domly selected unique species from the Birdsnap; this gives
transfer learninglN-BS-ft-CUB-ft ) for ne-grained image  us 366 species which is the number of species available in
classi cation. Experiment Il. The result shows that overlapping species
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are important to learn domain-generic species with a meanTa'gIe 2. M‘?arf‘ accurarlsy on t(;‘e _Ca'teCE'UCfSD biro: dataset Xf
aCCUI‘acy 0695% Su Se'[-spem c features learne using su set feature earning. An-

notated bounding boxes are used.

4.2. Evaluation of Subset Speci ¢ Features Method Mean Accuracy
Fine-tuned DecafZ6] 68.3%
IN-BS-ft + SF(k-means) 70.4%
IN-BS-ft + SF(SCNN) 72.0%

In this set of experiments we evaluate our proposed sub-
set feature learning method on Caltech-UCSD. We use the
same evaluation protocol as domain-generic feature learn-
ing in the previous section, where tbd-CNN is used to
extract features from given ground truth bounding box loca-
tion of the whole bird. We use the acrony® to indicate

Table 3. Comparison to recent results on the Caltech-UCSD bird
dataset. Bounding boxes are not used.

. L . Method Mean Accuracy

subset feature learning. Based on initial experiments we set
K =6. DPD-DeCAF R7) 44.9%

Results in Tabl@ show that subset feature learning pro- ~ Part-based RCNN with*" [26] 73.2%
vides considerable improvements. As a baseline, the results IN-BS-ft + SF(k-means) with P 76.2%
from [26] are shown, where the features were ne-tuned  IN-BS-ft + SF(SCNN) with “P 77.2%
on the Caltech-UCSD dataset; this equatedNeCUB- IN-BS-ft-CUB-ft + SF with KP 77.5%
ft in our terminology. Comparing to this baseline, both
of our proposed subset feature learning methdNsBS-
ft-SF(SCNN) andIN-BS-ft-SF(k-means) provide consid-
erable improvements with mean accuracies20% and
70:4% respectively. This demonstrates the effectiveness of
our proposed subset feature learning technique, and the im
portance Of the Subset Se|eCt0I’ as the SCNN approaCh pro Groove Billed Ani Groove Billed Ani Cardinal Chuck Will Widow
vides an absolute performance improvemerit:686 when
compared to the much simplermeans approach.
4.3. Comparison with State-of-the-Art

Groove Billed Ani Groove Billed Ani Cardinal Chuck Will Widow

In this section we demonstrate that subset feature learn-
ing can achieve state-of-the-art performance for automatic
ne-grained bird classi cation. Recent work ir2f] pro-
vided state-of-the-art performance on the Caltech-UCSD
dataset. This was achieved by crafting a highly accu-
rate parts localisation model which leveraged deep convo- “es°*r spamv Green Violetear
lutional features computed on bottom-up region proposals Figure 5. Ql_JaIitative comparison between our proposed method
based on the RCNN framework4] . We show that if we ar_“:]thfpprev'oﬁs State'Of'thﬁ'a” approazlﬁ [p"’}”'bas_ed RCNNh
use a similar approach but substitute their global feature V't ). The rst row shows examples of test images, the
vector with the feature vector obtained from subset featureSecond row shows the corresponding predicted classes from our

. . proposed method, and the last row images shows the predictions
learning, then state-of-the-art performance can be ac:hlevedusing D6]. It can be seen that the previous state-of-the-art ap-

We present our results under the same settind?€ls [ proach made errors despite the large visual dissimilarities between
where the bird detection bounding box is unknown during the test image and the predicted classes. In contrast, the proposed
test time. This setting is fully automatic and hence more re- approach provides the correct class labels in these cases.
alistic. Since we concentrate on feature learning we use the
detection results and parts features fr@#l [ and substitute
their global feature vector with the one we learn from subset shown in Fig.5 which highlight instances where the pre-

feature learning. vious state-of-the-art methods provides an incorrect class
The results in Table show that our proposed method |abel despite large visual dissimilarities. In contrast, our ap-

achieves a mean accuracy of.2% when we use domain-  proach provides the correct class label.

generic features and subset-specic features. This is a

considerable improvement over the previous state-of-the-5 conclusion

art system 26] which achieved a mean accuracy#.2%.

An extra 0:3% performance is gained when we perform We have proposed a progressive transfer learning system

progressive feature learning and ne-tune the CNN model to learn domain-generic features as well as subset learning

again on the Caltech-UCSD dataset. Qualitative results areto learn subset speci c features. For progressive transfer

Bank Swallow Belted_Kingbsher
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learning, we have shown that it is possible to learn domain-
generic features for tasks such as ne-grained image clas-
si cation. Furthermore, we have shown that progressive [11]
transfer learning of these domain-generic features can be
performed to learn target set speci c features, yielding con-
siderable improvements in accuracy.

Finally, we have presented a subset feature learning sys-

tem that is able to learn subset-speci c features. Using this
approach we achieve state-of-the-art performand& &b
for fully automatic ne-grained bird image classi cation,

the most dif cult setting. We believe our proposed method
can be useful not only for ne-grained image classi cation,

but also for improving general object recognition. We will

examine this potential in future work.
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Content Speci c Feature Learning for
Fine-Grained Plant Classi cation
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Abstract. We present the plant classi cation system submitted by the
QUT RV team to the LifeCLEF 2015 plant task. Our system learns a
content speci ¢ feature for various plant parts such as branch, leaf, fruit,
ower and stem. These features are learned using a deep convolutonal
neural network. Experiments on the LifeCLEF 2015 plant dataset show
that the proposed method achieves good performance with a score of
0:633 on the test set.

Keywords:  deep convolutional neural network, plant classi cation, sub -
set feature learning

1 Introduction

Fine-grained image classi cation has received considerable attentionecently
with a particular emphasis on classifying various species of birdsdogs and
plants [1, 3, 4, 11]. Fine-grained image classi cation is a challenging compet
vision problem due to the small inter-class variation and large intra-chss vari-
ation. Plant classi cation is a particularly important domain because of the
implications for automating Agriculture as well as enabling robotic agents b
detect and measure plant distribution and growth.

To evaluate the current performance of the state-of-the-art vision tehnol-
ogy for plant recognition, the Plant Identi cation Task of the LifeCLEF chal-
lenge [5, 7] focuses on distinguishing 1000 herb, tree and fern speci&his is an
observation-centered task where several images from seven organs of a plare
related to one observation. There are seven organs, referred to asntent types,
and include images of the entire plant, branch, leaf, fruit, ower, sem or a leaf
scan.

Inspired by [4], we use a deep convolutional neural network (DCNN) approdt
and learn a separate DCNN for each content type. We combine the content-
speci ¢ feature with a generic DCNN feature, which is trained usirg all of the
content types. This approach yields a highly accurate classi cation sgtem with
a score of 0633 on the test set.
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Fig. 1. For each test sample, a domain-generic (GCNN) and subset-spei ¢ (SCNN)
feature is extracted. These two features are then concatenated to fam a combined
feature vector.

2 Our Approach

Our proposed system consists of two main parts. First, we perform trasfer
learning to learn a domain-generic feature termed as gcyn  from all plants
images (regardless of content type). Second, we manually cluster theathset
into subsets based on content type and learn a feature specic to eachubset
( scnn )- For each image we extract both domain-generic (ccnn ) and subset-
specic ( scnn ) features, these features are obtained from layer 2015, of
the deep network. The two feature vectors are then concatenated to fan a
single feature vector as shown in Figure 1. These features are then wkdo
learn a multi-class linear SVM. Power andl, norm are applied independently
for domain-generic feature and content speci c feature prior to combiring the
feature vectors.

2.1 Content Clustering

There are 7 pre-de ned content types consisting of images from thentire plant,
branch, leaf, fruit, ower, stem or a leaf scan In both the training and testing
phases all participants are allowed to use the indicated content.

We make use of the content type to learn a DCNN that is ne-tuned (spe-
cialised) for a subset of the content types. However, because theiis a limited
number of images for each content type, we rst group the most visually ginilar
content types toghether. In particular, we de ne four subsets. The rst subset
conists of the the entire plant and branch content types, the second subset con-
sists of theleaf and leaf scan content types, the third subset containsfruit and
ower content types, and the fourth subset consists of thestem only.

2.2 Deep Convolutional Neural Networks as Feature Representation

Krizhevsky et al. [8] recently achieved impressive performance othe ImageNet
recognition task using CNNs, which were initially proposed by LeCun et al [9]



for hand written digit recognition. Since then CNNs have received conislerable
attention and in the Large-scale ImageNet Challenge 2014 (ILSVRC) the top
ve results were all produced using CNN-based systems [10].

In this work we ne-tune a general model for the task of plant classi-
cation. The base model that we ne-tune is the best performing modé from
ILSVRC [12], referred to as GoogLeNet. GoogLeNet is a very deep neural net-
work model with 22 layers. It consists primarily of convolutional layers. We use
the output of the last convolutional layer |5, after average pooling, to obtain
our feature vectors.

2.3 Domain Specic Feature Learning

Transfer learning has usually been applied by ne-tuning a general etwork,
such as the network of Krizhevsky et al. [8], to a specic task such as id
classi cation [13].

Inspired by the ndings of Zhang et al. [13] we learn a domain-generic DCNN
for the task of plant classi cation. This is achieved by applying transfer learning
on the parameters of the GoogLeNet model (learned from the large-scale Ima-
geNet dataset) using all of the training data for the plant classi cation task. This
new DCNN provides domain-generic features for the task of plant classtation
and is referred to as the domain-generic DCNN. The only di erence betwen the
pre-trained GooglLeNet model and the domain-generic DCNN is that the num-
ber of outputs for the last fully connected layer is changed to be 1000 which is
the number of training classes available. For each image we can then obtaia
domain-generic feature gcyn from the last convolutional layer |5g.

2.4 Subset Feature Learning as Content Speci ¢ Feature

A separate DCNN is learned for each of thek = 4 pre-de ned subsets by ne-
tuning the domain-speci ¢ model, described in Section 2.3. The an is to learn
features for each subset that will allow us to more easily di erentiate visually
similar content of plant species. As such, for each subset, we applyne-tuning to
the pre-trained GoogLeNet model. To train the k-th subset (Subset) we use the
Ny images assigned to this subseXy = [X1;:::; XN, ], With their corresponding
class labels.

The only di erence between these models and the pre-trained Googliéet
model is that the number of outputs for the last fully connected layer, of each
model, is set to the number of training classes in each subset. Trafer learning
is then applied separately to each network using backpropogation and stdastic
gradient descent (SGD). For each image belonging to thé-th subset a subset
feature vector scnn , IS Obtained by taking the output of the last convolutional
layer l5g.



3 Experiments

In this section we present a comparative performance evaluation of our mposed
method on a validation set and the de ned test sets. The provided taining
dataset is split into two sets: roughly 10% of the total training data was used as
a validation set and the rest is used for training the models. The spt is based
on observation id because nal testing is also observation-based.

This results in 82,033 training images, including 21,746 for thébranch and
entire subset, 32,186 forfruit and ower subset, 23,234 for theleaf and leaf
scan subset and 4,867 for thestem subset. The validation set consists of 9,725
images.

We use Ca e [6] for learning generic and subset speci ¢ features. Thepen-
source package LibLinear [2] is used to train the multi-class linears SVMsThe
SVM cost parameter C is set to 1 and all images are resized to 224 224.

3.1 Results on Validation Set

First we assess our proposed method on the validation set. We conductatree
sets of experiments which examine the e ectives of the domain-spec feature
vector, the subset feature vector and the combination of these two featre vec-
tors.

The results on the validation set, shown in Table 1, demonstrate that the
combination of these two feature vectors provides a considerable prmance
improvement. The combination of these two feature vectors achieves mean
accuracy of 666%. This is an absolute improvement of 6.5 percentage points
over the domain-speci c feature vector gcyn  Which achieves a mean accuracy
of 60:1%. By comparison, the subset feature vector scnn, achieves a mean
accuracy of only 580%. We believe that the subset feature vector performs
worse than the domain-speci c feature vector because of the limited amber of
training images for each subset.

Table 1: Mean accuracy on the LifeCLEF 2015 Plant dataset of our proposed
method. Annotated content information is used.

Method Mean Accuracy
Domain Speci ¢ Feature 60.1%
Content Speci ¢ Feature 58.0%
Combined 66.6%

3.2 Results on Test Set

In this section, we present our submitted results for the LifeCLER2015 plant
challenge. We submitted three runs:
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Chapter 5

Fine-Grained Classi cation via Mixture of Deep

Convolutional Neural Networks

In the previous chapter, hierarchical learning with DCNN-based feature has shown impressive
performance on the ne-grained classi cation problem. However, the hierarchical system is
limited by the accuracy of assigning a class to its correct subset. Another disadvantage is that
either a learnt expert SVM classi er or learnt a DCNN feature extraction was needed, so joint

training of features and a classi er in a single DCNN framework was not possible.

In contrast to previous techniques, in this chapter we explore a formulation to perform joint
end-to-end training of multi DCNNs simultaneously. We introduce a novel system based on a
mixture of deep convolutional neural networks (MixDCNNSs) that provides state-of-the-art per-
formance on two different ne-grained tasks, birds and plants. The same pre-clustering process
as shown in chapter 4 is used to initialisSeDCNN parameters. The main difference between
the previous method and MixDCNNSs is that the classi cation decision from each component
is weighted proportionally to the con dence of its decision, which is termed an occupation
probability. This allows us to de ne a single network (MixDCNN) to perform classi cation
in an end-to-end mechanism, and samples can be re-assigned to the most appropriate expert

network during the training process.

Empirical evaluations show that MixDCNN outperforms related approaches such as subset
feature learning introduced in the previous chapter, a gated DCNN approach similar to Jacobs
et al. [1991], and an ensemble of DCNNs. The results demonstrate performance improvements

over three challenging ne-grained datasets including CUB-200-2011 from 80% using a single
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80 CONVOLUTIONAL NEURAL NETWORKS

DCNN model to 81.1% with MixDCNN, the large-scale bird dataset Birdsnap and the Plant-
CLEF dataset with 6.7% and 3.4% absolute percentage improvement respectively over a single

model.

The content of this chapter has been published and presented at the 2016 Winter Conference
on Applications of Computer Vision under the algorithm track as “Fine-Grained Classi cation

via Mixture of Deep Convolutional Neural Networks”.
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Abstract

We present a novel deep convolutional neural network
(DCNN) system for ne-grained image classi cation, called
a mixture of DCNNs (MixXDCNN). The ne-grained im-
age classi cation problem is characterised by large intra-
class variations and small inter-class variations. To over-
come these problems our proposed MixDCNN system par-
titions images intd subsets of similar images and learns
an expert DCNN for each subset. The output from each
of theK DCNNSs is combined to form a single classi ca-
tion decision. In contrast to previous techniques, we pro-
vide a formulation to perfornjoint end-to-end training ~ Figure 1. Example images from the Birdsnap datastfhich
of the K DCNNs simultaneously. Extensive experiments, exhibits large intra-class varigtions and low inter-class variations.
on three datasets using two network structures (AlexNetE2ch column represents a unique class.
and GoogLeNet), show that the proposed MixDCNN sys-
tem consistently outperforms other methods. It provides aSigns samples to the most appropriate expert network. This

relative improvement of 12.7% and achieves state-of-the-artaPProach has two downsides. Firstly, a separate gating net-
results on two datasets. work (subset selector) needs to be trained. Secondly, the

expert networks are trained only to extract features, leaving
the nal classi cation to be performed by a linear support
1. Introduction vector machine (SVM).
We propose a novel system based on a mixture of
Fine-grained image classi cation consists of discrimi- deep convolutional neural networks (DCNNSs) that pro-
nating between classes in a sub-category of objects, for in-vides state-of-the-art performance along with several im-
stance the particular species of bird or d@gq, 8, 9, 23]. portant properties. Similar to Ge et al.3, we partition
This is a very challenging problem due to large intra-class the data intok non-overlapping sets to leaid expert
variations (due to pose and appearance changes), as welbDCNNs. However, unlike 3], the classi cation decision
as small inter-class variation (due to only subtle differencesfrom the each expert is weighted proportional to the con -

in the overall appearance between classes). Seel Fay. dence of its decision. This allows us to de ne a single net-

examples. work (MixDCNN), comprised ofK sub-networks (expert
To cope with the above problems, many ne-grained DCNNS), that can be trained to perform classi cation. This

classi cation methods have performed parts detectiy®| is in contrast to13], where each expert is used just for fea-

20, 24] in order to decrease the intra-class variation. Re- ture extraction. Our system has similarities to the gated net-
cently, an alternative approach was introduced by Ge etwork approach proposed by Jacobs etH)],[which utilises

al. [13] where the images were rst partitioned inkb non- a separately trained network to select the most appropriate
overlapping sets anld expert systems were learned. By expert network.

grouping similar images, the input space is being parti- The proposed MixDCNN system allows us to jointly
tioned so that an expert network can better learn the subtletrain the network, which has two advantagé€®: it obvi-
differences between similar samples. Expert selection wasates the need for a separate gating network (énsamples
performed by training a dedicated gating network which as- can be re-assigned to the most appropriate expert network



during the training process. Empirical evaluations show thatto improve the overall performance of a systefh [Bag-
this approach outperforms related approaches such as sulging manipulates the training examples to generate multi-
set feature learninglp], a gated DCNN approach similar ple hypotheses. In this case, a seKotlassi ers is learned
to [16], and an ensemble of classi ers. using a randomly selected subset of the training data. We
The paper is continued as follows. In Sectignve use this bagging approach on a set of DCNNs for a baseline
brie y review recent advances in ne-grained classi cation method and refer to it as an Ensemble approach (Seé}ion
and overview approaches to learn multiple expert classi- Ensemble approaches, or learnikgexpert classi ers,
ers, particularly within the eld of neural networks. In  has been explored by several researchers within the context
Section3 we present our proposed MixDCNN approach in of neural networks. In 1991 Jacobs et dl6][described a
detail. Sectiond is devoted to a comparative evaluation gated network structure to leakh expert neural networks
against several recent methods on the task of ne-grainedand applied it to multi-speaker vowel recognition. The un-
classi cation. Conclusions and possible future avenues of derlying idea is to only allocate a small region of the in-

research are given in Sectién put space to a particular expert system. This was achieved
by havingK expert systems (neural networks) which were
2. Prior Work allocated samples selected by a separate gating network.

Pri Kf ined i lassi cation h In [16], the gating network determines the probability that a
rior work for ne-grained image classi cation has con- sample is associated to one of theexpert systems.

centrated on performing parts detectidh b, 20, 24 in More recently, Ge et al.1f] outlined a subset feature

order to decrease the intra-class variation. The part-baseqie(,jlming (Subset FL) approach usikgexpert DCNNs. The
one-vs-one feature syste fs an e>_<ample of this, wr_]ere data is partitioned int& non-overlapping sets and for each
parts-based features are progressively selected to improve .t 4 expert DCNN is learned to extract set-speci ¢ fea-

Clﬁ.ssr: cz;tlo_n. An altetrpatlc\j/(: s the (fjeformable ?arts-crjnodeclj tures. A gating network is then used to extract only the most
which obtains a combined feature from a set of pre-de ned oo\ ant features from these DCNNs. Classi cation is

parts 24]._Ch§i eF al. p] proposed a symb_iotic model where then performed by training an SVM on these features, yield-
part Iocallsat|or_1 IS helped by segmentation af‘d’ conversely,ing impressive performance for ne-grained bird and plant
the segmentation is helped.by parts detection. Zhang ®%lassi cation [11]. An issue with this work is the reliance
al. [24] extract pose-normalised features based on Weakof an independent gating netwoikand the fact that fea-

semantic ann.otatlons to learn cross-component COITESPONg e extraction and classi cation are treated as independent
dences of various parts. steps

Recent work has shown the effectiveness of DCNNs for
ne-grained image classi cation, but again, predominantly
to perform parts detection. Region proposal methods com-
bined with a DCNN were shown to more accurately localise =~ We propose a novel mixture of DCNNs (MixDCNN)
object parts 23]. Lin et al. [19] showed that a DCNN can to improve ne-grained image classi cation by partitioning
be trained to perform both parts localisation and visibil- the data intoK non-overlapping sets and learning an ex-
ity prediction, achieving state-of-the-art results on the CUB pert classi er for each set. This approach has similarities
dataset 22]. Although the above parts-based approachesto the gated neural network proposed by Jacobs el 6. [
are fully automatic at test time, they require a large num- which has never been applied to DCNNs nor to the ne-
ber of images to be manually annotated in order to train thegrained classi cation problem. As such, we also outline a
model. gated DCNN (GatedDCNN). An overview of these two ap-

To remove the need for time-consuming manual anno- proaches is given in Figui
tations, recent work has explored ways to perform ne-  The main idea behind the MixDCNN and GatedDCNN

3. Proposed Approach

et al. 23] and Ge et al. 12] showed that, even without part  which make decisions about a subset of the data. This sim-
annotations, DCNNs can provide impressive performancepli es the space that is being modelled by each component.
for ne-grained classi cation tasks. Of particular interestis Key to both approaches is being able to assign a sample to
the approach of Ge et all] which showed that the data the appropriate network.

can be partitioned int& non-overlapping sets and an ex- A GatedDCNN assigns samples by learning a separate

pert feature extraction algorithm, utilising DCNNs, can be gating neural network which produces the probability,

trained for each of th& sets. that the sample belongs to tketh network. Learning this
Learning algorithms which construct a setlofclassi- gating neural network requires ground truth labels about

ers and make decisions by taking a weighted or average of which sample should be assigned to a particular network,
their predictions are often referred to as ensemble methodswhich for our work is an open question. In contrast, a
A simple ensemble approach calledgginghas been used MixDCNN assigns samples based on the con dence of the
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Figure 2. GatedDCNN structure (top) and MixDCNN structure (bottom). The t€ac. Prob. refers to occupation probability (re-
sponsibility) . In GatedDCNN, the gating network uses the image, the same input as each component (subset networks), to estimate
In contrast, MixDCNN estimates without the need for an external network.

prediction from each network, which leads us to consider ne-tuned DCNN that is learned using the cross-entropy
x to be the occupation probability of the sample for the loss to produce & -dimensional vector of probabilities.
k-th network. Thek-th value denotes the probability that the input image
Before we describe these two approaches in more detaill is associated with thie-th component. We refer to this as
we de ne some notation. The output of a DCNN, trained for an occupation probability.

classi cation, is arlN -dimensional vectoz of class predic- A fundamental dif culty with training the GatedDCNN
tions, whereN indicates the number of classes. These pre- is how to provide thd training labelsy. This label vector
dictions then are normalised by a softmd8,[21] to give is aK -dimensional label vector which indicates which of
the probability that the sample belongs to th¢h class: theK subsets the sample belongs to. To deal with this issue
expf 2n g we consider two ways of estimating these labels. The rst
= P — 1) approach is to initialise the labeys using the partitioning
j=1 expfzg of the training images int& subsets. The gated netwagk

(53 then trained using these labels and khd&CNNs (com-
ponents) are then trained independently so$has trained
exclusively with data from th&-th subset. The second ap-
3.1. GatedDCNN proach is to use the above gated network (Kndompo-
nents) as an initialisation and to iteratively retrain by:

In the approaches described below, we are most intereste
in the vector of predictions prior to applying the softmax.

Inspired by [L5, 16], we de ne a GatedDCNN that con-
sists ofK components (DCNNs) and an additional gating 1. FixingG, and then updatinff,;:::; Sk ] using the as-
network. The overall structure of this network is shown in signments fronG.

Fig. 2a. In this arrangement, tHeth DCNN Sy is given
greater responsibility for learning to discriminate subtle dif-
ferences of thé&-th subset of images, while the gating net-
work G is responsible for associating the imdgevith the
most appropriate component. The gating netw@ris a The labelsy estimated in step 2 are obtained by taking

these to estimate new labgls The networkG is then
updated using these new labels.



the network which is most con dent about its decision. For- 3.3. Differences Between MixDCNN and Ensembles

mally, y for thet-th training sample is given by: The aim of the MixDCNN approach is that each compo-

nent takes greater responsibility for a portion of the data
allowing each component to concentrate on samples (or
classes) that are more dif cult to differentiate. This will
allow the MixDCNN to learn subtle differences for similar
classes. This is in contrast to an Ensemble approach which
randomly excludes a portion of the training data for each
DCNN. Therefore, the key difference between the proposed
MixDCNN approach and an ensemble of DCNNs (Ensem-
ble) is the use of the occupation probability. For training,
this means the MixDCNN approach does not randomly se-
lect the data. Instead, each sample is weighted proportional
,,,,, For testing, the

MixDCNN approach is able to adaptively calculate the oc-
cupation probability for each sample, whereas an Ensemble
approach will use pre-de ned weights or, more commonly,

yr = argmax Cy
k=1 ::K

)

whereCy is the best classi cation result f@y using the
t-th sample:
Cyt = nl;nlaXN Zi;n;t 3
Classi cation with the GatedDCNN is performed using
a weighted summation of the classi cation results from the
K components: X
K

k=1 Ckn & (4)
wherecy., is the probability of the sample belonging to the
n-th class for th&-th component, andy is the probability
that the sample is assigned to th¢h componengy .

Cn:

An issue with the GatedDCNN system is that a separate

gating network has to be trained to assign a sample to
particular componert . This provides the further compli-
cation of having to estimate the labglsn order to train the
gating networkG. In this paper the rst GatedDCNN train-

ing approaches provides marginally better performance. In

equal weights.

a

4. Experiments

4.1. Datasets
We present results on three ne-grained image classi-

the experiment section, we will report results based on the cation datasets using two network structures. The three

rst approach.

3.2. Mixture of DCNNs (MixDCNN)

We propose a mixture of DCNNs approach where the oc-

datasets are the Caltech-UCSD-2011 (CUB200-20a4])
Birdsnap B], and PlantCLEF 201514]. Example images
are shown in Figure$ and3.

CUB200-2011 is a ne-grained bird classi cation task

cupation probabilities are based on the classi cation con- With 11,788 images from 200 bird species in North Amer-
dence from each component. An advantage of this struc- ica. This dataset has becomede factostandard for the
ture is that we can jointly train tHé¢ DCNNs (components) ~ bird classi cation task. Each species has approximately
without having to estimate a separate label vegtor train 30 images for training and 30 for testing. Birdsnap is a
a separate gating netwogk much larger bird dataset consisting of 49,829 images from
For MixDCNN, the occupation probability for tHe-th 500 bird species with 47,386 images used for training and
component is: 2,443 images used for testing. PlantCLEF 2015 is a large
plant classi cation dataset that has seven content types. To

expf Cxg
®) demonstrate the capabilities of the proposed MixDCNN ap-

K, expfCeg

whereCy is given by Eq. 8). This occupation probability
gives higher weight to components that are con dent about
their prediction. The overall structure of this network is
shown in Fig.2b.

Classi cation is performed by multiplying the output of
the nal layer from each component by the occupation prob-
ability and then summing over thé components:

X «
Zy =

k:

CUB200-2011

Zyn K (6)

k=1
This mixes the network outputs together and the probabil-
ity for each class is then produced by applying the softmax
function in Eq. (). As a consequence our MixDCNN is

optimised using the cross-entropy lbss PlantCLEF Flower

10optimised in a mini-batch Stochastic Gradient Descent framework. ~ Figure 3. Examples from CUB-200-2011 and PlantCLEF Flower.



proach for the task of ne-grained classi cation, we analyse fact that CUB200-2011 is a small dataset consisting of
its effectiveness on one content type, Flower. This portion just 5,994 training images. This is an order of magnitude
of the dataset consists of 28,705 images from 967 speciesfewer samples than other datasets such as Birdsnap. Fur-
We split this data into training and test sets. The training setthermore, applying transfer learning to GoogLeNet already
consists of 25,025 images from 967 species, while the testprovides exceptional performance and so minimises the im-
set has 3,200 images from 801 species. provement introduced by the MixDCNN framework, or any
Both CUB200-2011 and Birdsnap have bounding box multi-expert approach.
annotations around the object of interest. We use this in- The proposed MixDCNN method achieves state-of-the-
formation to extract just the object of interest from the im- art results on the challenging Birdsnap and PlantCLEF-
age. PlantCLEF 2015 does not come with bounding box Flower datasets. For Birdsnap the previous state-of-the-art
information making it a more challenging dataset. performance was 48.898][ Applying transfer learning to
Prior work [13, 23] has shown the importance of transfer GooglLeNet already outperforms this prior art with an ac-
learning for the ne-grained image classi cation problem. curacy of 67.4%. MixDCNN provides a further relative
Results have shown that training a DCNN from scratch for performance improvement of 9.9%. For the PlantCLEF-
either the ne-grained CUB200-2011 or Birdsnap dataset Flower dataset the baseline performance of DCNN-tl (using
leads to over tting on the training samples. As such, for GoogLeNet) is 48.7%. MixDCNN provides state-of-the-art
all the of our experiments we use pre-trained networks performance with a relative performance improvement of
from ImageNet 7] to provide a good initialisation for each  7.0%.
DCNN and then perform transfer learning. We consider this  The MixDCNN approach consistently outperforms the
to be our baseline and refer to it B&CNN-tl. All of our Ensemble, GatedDCNN and Subset FL approaches. Inter-
networks are trained using Caffé7] and partitioning was  estingly, it provides a considerable improvement over the

performed using the Bob toolkif]. closely related GatedDCNN approach, with an average rel-
] ] ative performance improvement of 9.1%. We attribute this
4.2. Comparative Evaluation to the ability of the MixDCNN approach to adaptively re-

We compare the proposed MixDCNN approach against assign samples to the most appropriate expert network, in
four other related methodét) the baseline DCNN-t2) an spite of the original partitioning.
ensemble oK DCNNSs, (3) an implementation of Gated- In our experiments, component sizes greater #an 6
DCNN, and(4) Subset FL 13. Two network structures  were not considered as we could not store these in mem-
considered are the well known AlexNeitd] and the Large  ory on a single GP@I This highlights one of the limitations
Scale Visual Recognition Challenge (ILSVRC) 2014 win- with this technique as it currently requires all of the net-
ner GoogLeNet21]. AlexNet is a deep network consisting  works to be stored on a single GPU; future work should con-
of 8 layers, while ILSVRC has 22 layétsWe follow the  sider how to extend the architecture across multiple GPUSs.
same procedure as Ge et. aBJto cluster the data. For
the AlexNet structure we use the output of the rst fully 5. Conclusion
connected layer as features for clustering. For GoogLeNet

we use the output of the last layer, prior to classi cation, as W& have proposed a novel mixture of deep neural net-
features. In both cases linear discriminant analysis (LDA) WOTks, termed MixDCNN, which achieves state-of-the-art

is applied to reduce the dimensionality B = 128. In performance for ne-grained classi cation. It provides an

our initial experiments, we variedl and results showed no  average relative performance improvement of 12.7% and

impact of that. has been shown to consistently outperform several related
The results in Tablé show that the proposed MixDCNN methods: subset feature learning, GatedDCNN, and an en-

approach provides consistent improvement regardless ofsemble of classi ers. _

network structure or dataset. MixDCNN provides the best _ The key advantage of our proposed approach is the use
performance for all of the network and dataset combina- Of @n occupation probability that weights each sample pro-
tions, with the exception of the MixDCNN model using the Portional to its relevance to each DCNd;...x . This ap-
GoogLeNet structure on CUB. It provides an average rela- proach obviates the need for a separate gating function and

tive performance improvement of 12.7% over the baseline Nighlights the importance of being able to adaptively weight
DCNN-tl approach, excluding CUB. samples based on their relevance to a component (DCNN).

For the CUB dataset, using multiple expert networks _Future work will explore alternative methods for initial-

provides limited performance improvement. This is true iSiNg the clustering and its impact upon performance. For
for all of the methods examined. We attribute this to the instance, the impact of grouping images together in terms

2To prevent GoogLeNet from over- tting we use a higher dropout rate 3The GPU used in all our experiments was an Nvidia K40 Tesla with
equal to 0.5 for the nal loss layer, as opposed to the original setting of 0.4. 12 Gb of memory.



Table 1. Comparison of the proposed MixDCNN approach against DCNN-tl, Ensemble, GatedDCNN and Subset FL on three datasets:

CUB, BirdSnap and PlantCLEF-Flower. Two network structures are used: AlexNet and GooglLeNet.

DCNN-tl | Ensemble | GatedDCNN | Subset FL | MixXDCNN
CUB 68.2%0 71.2%% 69.20 72.0% 73.%%
AlexNet BirdSnap 55.%% 57. 2% 57.%% 59.M 63.20
PlantCLEF-Flower| 29.1% 30.2% 30.26 31.1% 35.0%
CUB 80.0% 80.9% 81.0% 81.206 81.1%
GoogLeNet BirdSnap 67.%% 71.%%6 70.1% 72.8% 74.1%
PlantCLEF-Flower| 48.7% 50.2% 49. % 51.7%% 52.1%

of their pose rather than similar visual appearance. Further-[11] Z. Ge, C. McCool, C. Sanderson, and P. Corke. Content
more, we will examine the role of the occupation probabil-
ity in two ways: (i) whether the responsibility for a sample
is shared between components, gilddeeper analysis of
how this occupation probability changes during the train-
ing process. Additionally, we intend on exploring different
methods for computing the occupational probability via al- [13)
ternative aggregation techniques.
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Chapter 6

Exploiting Temporal Information for Fine-Grained

Object Classi cation

Prior work and the previous three chapters treat the ne-grained classi cation task as a still-
image classi cation problem and ignores the temporal information available from videos of
different ne-grained classes [Anantharajah et al., 2014, Belhumeur et al., 2008, Kumar et al.,
2012, Liu et al., 2012, Parkhi et al., 2012].

In this chapter, we introduce the problem of video-based ne-grained object classi cation,
and explore several methods to exploit the temporal information on a new bird video dataset
we created. We rst present a systematic study on several DCNN-based methods that at-
tempt to exploit temporal information such as 3D ConvNets [Tran et al., 2015], two-stream
DCNNs [Simonyan and Zisserman, 2014] and bilinear DCNNs [Lin et al., 2015]. We then
propose a novel adaptation of the bilinear DCNN approach for video bird classi cation and
highlight the potential bene ts that ne-grained object classi cation can gain by modelling
temporal information. In our proposed method the bilinear DCNN is adapted to extract local
co-occurrences by combining information from the convolutional layers of spatial and temporal
DCNNs.

We evaluate our method on the new and challenging video dataset of birds which contains
several challenges, such as clutter, large variations in scale, camera movement, and considerable
pose variations. Experiments show that by using the proposed approach, the performance is im-
proved from 23.1% (using single images) to 41.1%. The best results we obtained surpass all the

previous state-of-the-art video classi cation methods including two-stream DCNN with 38.9%
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accuracy and C3D with 38.6%. By incorporating the latest object detection framework [Ren

et al., 2015], we can further boost the performance to 53.6%.

The content of this chapter has been submitted to the European Conference on Computer
Vision (ECCV) 2016 as “Exploiting Temporal Information for Fine-Grained Object Classi ca-

tion”.
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Abstract.  Fine-grained classi cation is a relatively new eld that has
concentrated on using information from a single image, while ignoring
the enormous potential of using video data to improve classi c ation. In
this work we present the novel task of video-based ne-grained object
classi cation, propose a corresponding new video dataset, and perform
a systematic study of several recent deep convolutional neural network
(DCNN) based approaches, which we speci cally adapt to the tas k. We
evaluate three-dimensional DCNNs, two-stream DCNNs, and bilin ear
DCNNs. Two forms of the two-stream approach are used, where spa-
tial and temporal data from two independent DCNNs are fused either
via early fusion (combination of the fully-connected layers) an d late fu-
sion (concatenation of the softmax outputs of the DCNNSs). For b ilinear
DCNNs, information from the convolutional layers of the spatial an d
temporal DCNNs is combined via local co-occurrences. We then fusethe
bilinear DCNN and early fusion of the two-stream to combine the sp atial
and temporal information at the local and global level (Spatio- Temporal
Co-occurrence). Using the new and challenging video dataset d birds,
classi cation performance is improved from 23.1% (using single images)
to 41.1% when using the Spatio-Temporal Co-occurrence system.Incor-
porating automatically detected bounding box location furthe r improves
the classi cation accuracy to 53.6%.

Keywords:  ne-grained recognition, video classi cation, deep learning ,
deep convolutional neural networks, spatio-temporal informati on.

1 Introduction

Fine-grained object classi cation consists of discriminating betwen classes in a
sub-category of objects, for instance the particular species of bird orag [2, 4,
7,8,26]. This is a very challenging problem due to large intra-class variabns
caused by pose and appearance changes, as well as small inter-class variation
due to subtle di erences in the overall appearance between classd1].
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Prior work in ne-grained classi cation has concentrated on learning image-
based features to cope with pose variations. Initially such approachessed tra-
ditional image-based features such as colour and histograms of gradients [2]
while modelling the pose using a range of methods including deforable parts-
based approaches [4, 18, 27]. More recently, deep convolutional neural netwsr
(DCNNSs) have been used to learn robust features [5], cope with large vations
by using a hierarchical model [9], and automatically localise regions ofmpor-
tance [10]. Despite the advances provided by these approaches, prioovk treats
the ne-grained classi cation task as a still-image classi cation problem and
ignores complementary temporal information present in videos.

Recent work on neural network based approaches has provided notable rd&i
in video-based recognition [13, 21, 23, 25]. Karpathy et al. [13] demonstrated the
surprising result that classifying a single frame from a video usig a DCNN was
su cient to perform accurate video classi cation, for broad categories such as
activity and sport recognition. Within the action recognition area, Simonyan
and Zisserman [21] incorporate optical ow and RGB colour information into
two stream networks. Tran et al. [23] apply deep 3D convolutional networks
(3D ConvNets) to implicitly learn motion features from raw frames and then
aggregate predictions at the video level. Ng et al. [25] employ Long Short-Ten
Memory cells which are connected to the output of the underlying CNN to
achieve notable results on the UCF-101 [22] and Sports 1 million datasets [13].
To date, the above neural network based approaches have not been expldréor
the task of video-based ne-grained object classi cation.

Contributions.  In this paper, we introduce the problem of video-based ne-
grained object classi cation, propose a corresponding new dataset, and plore
several methods to exploit the temporal information. A systematic sudy is per-
formed comparing several DCNN based approaches which we have speci tal
adapted to the task, highlighting the potential bene ts that ne-grain ed object
classi cation can gain by modelling temporal information. We evaluate 3D Con
vNets [23], two-stream DCNNSs [21], and bilinear DCNNs [17]. Two forms of
the two-stream approach are used: (i) the originally proposed late-fusiorform
which concatenates the softmax outputs of two independent spatial andémporal
DCNNSs, and (ii) our modi ed form, which performs early-fusion via combina-
tion of the fully-connected layers. In contrast to the two forms of the two-stream
approach, we adapt the bilinear DCNN to extract local co-occurrences bycom-
bining information from the convolutional layers of spatial and temporal DCNNSs.
The adapted bilinear DCNN is then fused with the two-stream approach (arly
fusion) to combine spatial and temporal information at the local and global le\el.

The study is performed on a new and challenging video dataset of birdgon-
sisting of 1,416 video clips of 100 species birds taken by expert birdaichers.
The dataset contains several compounded challenges, such as clutteayge vari-
ations in scale, camera movement and considerable pose variations. Exjpaents
show that classi cation performance is improved from 23.1% (using singd im-
ages) to 41.1% when using the spatio-temporal bilinear DCNN approach, which
outperforms 3D ConvNets as well as both forms of the two-stream approach.
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We highlight the importance of performing early fusion, either at the input layer
(3D ConvNets) or feature layer (adapted bilinear DCNN), as this consistenly
outperforms late fusion (ie. the original two-stream approach). Incorporaing au-
tomatically detected bounding box location further improves the dassi cation
accuracy of the spatio-temporal bilinear DCNN approach to 53.6%.

We continue the paper as follows. Section 2 describes the studied ath-
ods and our adaptations, while Section 3 describes the new video-basdird
dataset. Section 4 is devoted to comparative evaluations. The main ndimgs are
summarised in Section 5.

2 Combining Spatial and Temporal Information

In this section we rst describe two baseline networks that make ug of either
image or temporal information. We then outline the deep 3-dimensional conelu-
tional network [23], extend the two-stream approach [21] and adapt the bilinar
DCNN approach [17] to encode local spatial and temporal co-occurrences.

2.1 Underlying Spatial and Temporal Networks

Our baseline systems are DCNNSs that use as input either optical ow (tenporal)
or image-based features. The temporal networkl uses as input the horizontal
ow Oy, vertical ow Oy, and magnitude of the optical ow Opyy combined
to form a single optical feature mapO 2 R" Y 3 whereh w is the size of
the feature map (image). The spatial network S uses RGB frames (images) as
input. Both S and T use the DCNN architecture of Krizhevsky et al. [15] which

layers, S'©® and S'¢7, prior to the softmax classi cation layer, S°. The networks
are trained by considering each input frame from a video (either imageor opti-
cal ow) to be a separate instance, and are ne-tuned to the speci c task (and
modality) by using a pre-trained network. Fine-tuning [24] is neassary as we
have insu cient classes and observations to train the networks from sratch (pre-
liminary experiments indicated that training the networks from scratch resulted
in considerably lower performance).

When performing classi cation, each image (or frame of optical ow) is ini-
tially treated as an independent observation. For a video ofN; frames this leads
to N; classi cation decisions. To combine the decisions, the max vote of trse
decisions is taken.

2.2 Deep 3D Convolutional Network

The deep 3-dimensional convolutional network (3D ConvNet) approach [23],
originally proposed for action recognition, utilises 3-dimensional convoltional
kernels to modelL frames of information simultaneously. In contrast to optical
ow features where temporal information is explicitly modelled, the approach
implicitly models the information within the deep neural network structure.
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Fig. 1. Conceptual illustration of the spatio-temporal co-occurrence based approach.

This approach obtains state-of-the-art performance on various action recogtion
datasets such as UCF-101 [22] and ASLAN [14]. The network is ne-tuned for
our classi cation task by taking a sliding window of L = 15 frames and moving
the sliding window one frame at a time; each sliding window is consiered to
be a separate instance. This results ilN¢s 14 classi cation decisions which are
combined using the max vote.

2.3 Spatio-Temporal Two-Stream Network: Early and Late Fusion

The two-stream network proposed for action recognition by Simonyan and Zis-
serman [21] uses the two independent spatial and temporal networkS and T.
The softmax output of these two networks is then concatenated and used aa
feature vector that is classi ed by a multi-class support vector machine (SVM).
We refer to this network as Two-Stream (late fusion); it is conceptually illus-
trated in Fig. 2(a).

A potential downside of this approach is that fusion of spatial and temporal
information is done at the very end. This limits the amount of complemenary
information captured as scores (or decisions) from the softmax classi cabn layer
are combined. To address this issue, we propose to combine the tworeams of
information much earlier (early fusion) by combining the fc 6 outputs, S and
Tf¢8: fc6 is the rst fully connected layer and is often used to extract a shgle
feature from DCNNSs [5]. We refer to this modi ed network as Two-Stream (early
fusion). See Fig. 2(b).

2.4 Joint Spatial and Temporal Features via Co-occurrences

We adapt the recently proposed bilinear DCNN approach by Lin et al. [17] via
combining the convolutional layers of the baseline spatial and temporal atworks
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by calculating co-occurrences. The rationale behind is that di erent species of
birds may have di erent appearance and motion patterns and their combnation.

Speci cally, let the feature maps of the n-th layer of the spatial and temporal

networks beS" 2 R W d gnd T" 2 RM W dn where d,, is the number of
dimensions for the feature map (number of kernels). The two featuranaps are
combined by calculating an outer product:

Pi;j =vecC Sln Tln | (1)

where S}y 2 R and T 2 R are the local feature vectors of the spatial
and temporal streams at Iocatlon @;j ), vec() is the vectorization operation,

andP 2 R" W 9 with Pij 2 RY being the co-occurrence feature at location
(i;J ). As such, the outer product operation captures the co-occurrence othe
visual and motion patterns at each spatial location. Max pooling is applied
to all the local encoding vectorsP;; to create the nal feature representation

F 2 RU. Finally, L, normalisation is applied to the encoding vector [17]. The
overall process is conceptually illustrated in Fig. 1.

The spatio-temporal bilinear DCNN feature is combined with the fc 6 spatial
and temporal features used forTwo-Stream (early fusion). This allows us to
combine the spatial and temporal information at both the local and global level
The resultant features are fed to an SVM classi er. See Fig. 2(c) for a coceptual
illustration. We refer this system as Spatio-Temporal Co-occurrence

3 Dataset: Videos of Birds 100 (VB100)

To investigate video-based ne-grained object classi cation we proposea new
and challenging dataset consisting of 1,416 video clips of 100 bird specitgken
by expert bird watchers. The birds were often recorded at a distane, introducing
several challenges such as large variations in scale, camera movement acah-
siderable pose variations; a link to the dataset will be provided uporpublication.
See Fig. 3 for examples.

For each class (species of bird), the following data is provided: deo clips
with activity annotations, sound clips, automated bounding box detection, as
well as taxonomy and distribution location. See Fig. 4 for an example.

The median length of a video is 32 seconds with the the shortest being
seconds and longest being 118 seconds. Each class has on average 15 clipg, wit
the lowest being 6 and the highest being 23. Most videos (977) were capted
at 30 frames per second (fps), while 422 were captured at 25 fps, 10 at 60fps,
and 1 at 100 fps. Often the camera will need to move in order to track thebird,
keeping it in view. This form of camera movement is present in 798 veos, with
the remaining 618 videos obtained using static cameras.

4 Experiments

Two sets of experiments are presented in this section. In the rsset (Section 4.1),
we evaluate the performance without taking into account whether each ideo clip
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(c) Spatio-Temporal Co-Occurrence

Fig. 2. Overview of the Two-Stream and Spatio-Temporal Co-Occurrence ap proaches
for ne-grained video classi cation. In (a) the Two-Stream app roach useslate fusion,
where features are combined from the softmax layer. In (b) the Two-St ream approach
usesearly fusion, where features are combined from thefc 6 layer. The Spatio-Temporal
Co-Occurrence approach (c) combines the co-occurrence (bilinea DCNN) features with
the features from fc6.

was recorded by a static or moving camera. In the second set (Section 4,2)e
study the e ect of camera movement on performance. In all cases, to olain a per
video classi cation decision we use the max voting from the classi edrames. For
the Spatio-Temporal Co-occurrence approach, initial experiments fond that us-
ing the last convolutional layer n = ¢5 provided the best performance; this leads
to d = 65,536 for the spatio-temporal bilinear features. The input frame size for
all networks is 224 224. Training and testing is performed using Ca e [12].

The dataset is divided into 730 training videos (train set) and 686 testng
videos (test set). Results are presented in terms of mean classiation accuracy.
Classi cation accuracy is calculated on a per video basis and per class has
with accuracy = N5=N°¢, where N§ is the number of correctly classi ed videos
for the c-th class andN ¢ is the number of videos for thec-th class. The mean
classi cation accuracy is then calculated across all of the classes.
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4.1 Comparative Evaluation

We rst investigate the performance of two independent networks forspatial and
temporal information: Spatial-DCNN and Temporal-DCNN. We then compare
the performance of 3D ConvNets [23] ne-tuned for our bird classi cation task
(referred to as 3D ConvNets-FT), the two-stream approach [21] (which comines
the Spatial-DCNN and Temporal-DCNN networks), and the spatio-temporal co-
occurrence approach. Finally we evaluate the performance of the co-ogrence
approach in conjunction with an o -the-shelf bird detector/locator. For this we
use the recent Faster Region CNN [20] approach with default parameters é&ned
for the PASCAL VOC challenge [6]; only bird localisations are used, with al
other objects ignored. Examples of localisation are shown in Fig. 5.

Network Setup. The Spatial-DCNN uses the AlexNet structure pre-trained
on the ImageNet dataset [15] before being ne-tuned for our bird classi caton
task. It is trained by considering each frame from a video to be a sepate
instance (image). Two variants of Spatial-DCNN are used: (i) randomly sedcting
one frame per video clip, and (ii) using 5 frames per second (fps)dm each video

Fig. 3. Example frames from video clips in the VB100 dataset. Each row shows four
sample frames for a unique class. The rst frame in each row (left to righ t) shows an easy
situation, followed by three images showing variations in pose, scale and background.

+%: S

7D[RQRBWHUQD HDPEHDV 0D]DWODQ 6LQDORD OH[LFR

*HQXV RIWHQ PHIWHGERWWKH VL[ VSHFLHV KKDB B\GROWGDZLHN KHH QW
IHDWXUHV RI PRUSKRORJ\ ZKLFK \HHAMWWKIQR D)SIUPW  MXRSRHEBHVEHIFQADHEI
VDQGYLFEQULYHOKPBYQVWAGQLXEVSHFLILF VWDWXV KDV RWHRLEHH
'LVWULERWERQF FRDVW RI 1IRUWK $PH WG B UBIVGK QrH U D Q BV WWR.F \B
&DOLIRUQLD DQG IURP *XOI RI &DOLIRUQLD WR 1D\DULW

Fig.4. An example for the class Elegant Tern in the new video-based bird dataset.
Top-left: a still shot from one of the video clips. Bottom-left: s pectrogram created from
the corresponding audio le. Right: taxonomy information abou t the class.
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Fig.5. Examples of bird localisation (red bounding box) using the def ault settings of
Faster R-CNN [20]. Top row: good localisations. Bottom row: ba d localisations due to
confounding textures, clutter, small objects, and occlusions.

clipt. The Temporal-DCNN uses dense optical ow features computed from the
Matlab implementation of Brox et al. [3]. For the sake of computational e cie ncy,
we have calculated the optical ow every 5 frames.

It is generally bene cial to perform zero-centering of the network nput, as
it allows the model to better exploit the recti cation non-lineari ties and for
optical ow features provides robustness to camera movement [21]. Rerefore,
for both Spatial-DCNN and Temporal-DCNN we perform mean normalisation
of the input data. For Spatial-DCNN we subtract the mean value for each RGB
channel, while for Temporal-DCNN mean ow subtraction is performed for the
temporal input.

For the two-stream approach we use two forms (as described in Section 2:3)
(i) early fusion, where the rst fully connected features (fc6) from the Spatial-
DCNN (with 5 fps) and Temporal-DCNN networks are concatenated, and (ii) late
fusion, where the softmax output of the two networks is concatenated. br the
two-stream and the spatio-temporal co-occurrence approaches, the relsant fea-
ture vectors are fed to a multi-class linear SVM for classi cation.

Quantitative Results. The results presented in Table 1 show that using
more frames from each video (ie. more spatial data) leads to a notable incase
in accuracy. This supports the use of videos for ne-grained classi cabn. The
results also show that spatial data provides considerably more disaninatory
information than temporal data. In all cases, combining spatial and temporal n-
formation results in higher accuracy than using either type of informaton alone,
con rming that the two streams of data carry some complementary information.

In contrast to the using late fusion in the standard two-stream approach,
performing early fusion yields a minor increase in accuracy (3%5% vs 389%)
and slightly exceeds the accuracy obtained by 3D ConvNets-FT (3%%). Us-
ing the co-occurrence approach leads to the highest fusion accuracy of :6%.

! The video clips were normalised to 5 fps, as this was computationally more e cient.
Preliminary experiments indicated that using 5 fps leads to simi lar performance as
normalising at 25 fps.
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Table 1. Fine-grained video classi cation results on the VB100 video d ataset.

Method Mean Accuracy
Spatial-DCNN (random frame) 23.1%
Spatial-DCNN (5 fps) 37.0%
Temporal-DCNN (  =5) 22.9%
Two-Stream (early fusion) 38.9%
Two-Stream (late fusion) 37.5%

3D ConvNets-FT 38.6%
Spatio-Temporal Co-occurrence 41.1%
Spatio-Temporal Co-occurrence + bounding box 53.6%

Fig. 6. Qualitative evaluation using t-SNE [19] to visualise the da ta for 10 classes
(indicated by unique colours). Left: using Spatial-DCNN featu res. Right: using Spatio-
Temporal Co-occurrence features. For both approaches several disinct clusters are
formed for each class. By using the co-occurrence approach fewer segrated clusters
are formed, and the separated clusters tend to be closer together.

This highlights the importance of making use of the extra information from the
video domain for object classi cation. Finally, using the Spatio-Temporal Co-
occurrence system in conjunction with an automatic bird locator increases the
accuracy from 416% to 536%. This in turn highlights the usefulness of focusing
attention on the object of interest and reducing the e ect of nuisancevariations.

Qualitative Results.  To further examine the impact of incorporating tem-
poral information via the co-occurrence approach, we visualise 10 classeavith
features taken from the Spatial-DCNN and Spatio-Temporal Co-occurrencep-
proaches. To that end we use the t-Distributed Stochastic NeighbouEmbedding
(t-SNE) data visualisation technique based on dimensionality reducton [19]. In
Fig. 6 it can be seen that both sets of features yields several distinalusters
for each class. However, by using the co-occurrence approach feweipagated
clusters are formed, and the separated clusters tend to be closer taper. This
further indicates that benet can be obtained from exploiting tempor al infor-
mation in addition to spatial information.
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Table 2. E ect of static and moving cameras on performance, using a 21 class subset of
the VB100 dataset without bounding box detections. Temporal -DCNN (no zero-norm)
is trained without applying mean subtraction to the input featu res.

Network Camera Type Mean Accuracy
Spatial-DCNN Static 57.6%
Spatial-DCNN Moving 47.8%
Temporal-DCNN (no zero-norm) Static 28.9%
Temporal-DCNN (no zero-norm) Moving 23.7%
Temporal-DCNN Static 32.2%
Temporal-DCNN Moving 33.3%
Spatio-Temporal Co-occurrence  Static 61.1%
Spatio-Temporal Co-occurrence  Moving 53.7%

4.2 E ect of Camera Type: Static vs Moving

In this section we explore how camera motion a ects performance. Camer mo-
tion is a dominant variation within the VB100 dataset as it contains 618 video
clips recorded with a static camera and 798 video clips recorded witla moving
camera, which follow bird movement (eg., ight). Fig. 7 shows exampés from
two videos of Elegant Tern recorded by static and moving cameras.

Previous work in action recognition [11, 16], rather than ne-grained object
classi cation, has presented con icting results regarding the impact of camera
motion. Jain et al. [11] showed that features which compensated for camera
motion improved performance, while Kuehne et al. [16] showed that thgresence
of camera motion either had little e ect or improved performance.

We manually select 21 classes with videos recorded with and without cam
era movement, and examine the performance of the Spatial-DCNN, Temporal
DCNN and the Spatio-Temporal Co-occurrence approach. The setup of the rie
works is the same as per Section 4.1. The results in Table 2 show that Spat-
DCNN is adversely a ected by camera movement with the accuracy dropmg
from 57.6% to 47.8%. This leads to a similar degradation in performance for the
Spatio-Temporal Co-occurrence approach: from 61.1% to 53.7%. We attribute
the degradation in performance of the spatial networks to the highly chalénging
conditions, such as the di erence between stationary and ying bird presented
in Fig. 7. By contrast, performance of Temporal-DCNN is largely una ected.

We hypothesise that the Temporal-DCNN is robust to camera movement die
to the mean subtraction operation that can reduce the impact of global motion
between frames. To test the above hypothesis we re-trained the Teporal-DCNN
without mean subtraction (no zero-norm). This results in the performance for
the Static case reducing from 32.2% to 28.9%, while for the Moving case theer-
formance reduced considerably further: from 33.3% to 23.7%. This suppastour
hypothesis and highlights the importance of the mean subtraction pre-pocessing
stage for temporal features in the presence of camera motion.
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Fig. 7. Top row: examples of video frames recorded by a static camera. Bottom row:
examples of video frames recorded by a moving camera, manually traking the bird.

5 Main Findings

In this work, we introduced the problem of video-based ne-grained olject classi-
cation along with a challenging new dataset and explored methods to exjoit the

temporal information. A systematic comparison of state-of-the-art DCNN based
approaches adapted to the task was performed which highlighted that incqro-
rating temporal information is useful for improving performance and robustness.
We presented a system that encodes local spatial and temporal co-oatance
information, based on the bilinear CNN, that outperforms 3D ConvNets and
the Two-Stream approach. This system improves the mean classi catioraccu-
racy from 23.1% for still image classi cation to 41.1%. Incorporating bounding
box information, automatically estimated using the Faster Region CNN, further
improves performance to 53.6%.

In conducting this work we have developed and released the novel deo bird
dataset VB100 which consists of 1,416 video clips of 100 bird species. Thiatdset
is the rst for video-based ne-grained classi cation and presents clallenges such
as how best to combine the spatial and temporal information for classi caton.
We have also highlighted the importance of normalising the temporal featres,
using zero-centering, for ne-grained video classi cation.

Future work will exploit other modalities by incorporating the audio (sound),
taxonomy information, and the textual description of the video clips.
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Chapter 7

Conclusion

The objective of this thesis has been to investigate a general and robust ne-grained classi -
cation system to answer the research questions “how can images and videos of sub-categories
in challenging scenarios be robustly classi ed?” To achieve these objectives we have proposed
methods and modelling techniques for ne-grained classi cation that can be applied to multiple
ne-grained tasks such as food, sh, plant and bird classi cation. This chapter summarise the
contributions made in this thesis. We then discuss potential usages and future research directions

for this area.

7.1 Summary of Contributions

The four contributions made in this thesis are:

(i) Proposed the novel local inter-session variability modelling (Local ISV) for ne-
grained classi cation. The rst major contribution of this thesis is to answer the question of
modelling different instances of the same class under various environments. We implemented
inter-session variability modelling (ISV) and extended of this to model local regions for ne-
grained (sh and food) image classi cation. The proposed Local ISV approach is able to
capture the crucial local identity information and also model and suppress noise locally. From
the experiment result of applying Local ISV to ne-grained sh classi cation, the proposed
method provides a relative improvement of 38% over standard ISV on the QUT sh dataset. We

then explored how advances in deep convolutional neural networks (DCNNs) could be used to

101



102 CHAPTER 7. CONCLUSION

improve the robustness of the local features used in the ISV framework. We proposed a layer-
restricted tuning method to reduce the dimensionality of the DCNN and used this to extract
local features. To do this we proposed a two-step retraining method to perform dimensionality
reduction on the original pre-trained DCNN model. Combining the local DCNN feature with
Local ISV, comparative experiments show that considerable performance improvements can be

achieved on the challenging Fish and UEC FOOD-100 datasets.

(i) Novel hierarchical learning framework. The second contribution is to proposed a
novel hierarchical learning framework which rst groups visually similar classes into the same
subset and then train an expert classi er for each subset. This hierarchical-based approach
leverages the weights of both local and global information to generate more discriminative and
robust classi ers for ne-grained bird classi cation. Evaluations on the challenging CUB-200
bird dataset, with parts detection algorithms such as DPM and DPD on top of our proposed
approach, shows that classi cation accuracy can be increased from 64.5% to 72.7%, a relative
improvement of 12.7%. However, by using the ground-truth subset labels the best performance
can be achieved through this approach is 78.6% which indicates that performing more accurate
assignment of a sample to its subset can yield considerable performance improvements. To
Il in this gap, we later improved this system by introducing subset feature learning into this
framework so that subset-speci c features could be learnt and extracted. A combined represen-
tation which uses both the subset-speci ¢ and globally learned features was then used to achieve

state-of-the-art performance of 77.5% for fully automatic ne-grained bird image classi cation.

(iif) Novel Mixture of DCNNs. The third major contribution of this thesis is to propose a

novel mixture of DCNNs. This mixture of DCNNs extends the hierarchical learning framework

by probabilistically assigning a sample to a network, during both training and testing. This
allows us to jointly train the subset networks in an end-to-end manner. The nal decision of each
sample is weighted by the occupation probability of each DCNN component. The occupation
probability obviates the need for a separate subset selector and highlights the importance of
being able to adaptively weight samples based on their relevance to a DCNN component.
Empirical evaluations showed that this approach outperforms previous subset feature learning
methods with an average relative performance improvement of 12.7% and achieves consistently
improved performance over several related methods such as an ensemble of classi ers, Gated-

DCNN and subset feature learning.
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(iv) Video-based ne-grained classi cation. The fourth contribution is to demonstrate the
potential of exploiting temporal information to improve the robustness of ne-grained classi ca-
tion. We explore a new direction for ne-grained classi cation, ne-grained video classi cation.

In our proposed method, temporal information is captured by optical ow and these motion fea-
tures from various videos are used to train a temporal DCNN while raw video frame pixels are
fed into a spatial DCNN to learn spatial information. We propose a novel adaptation of bilinear
pooling to extract local co-occurrences by combining information from the convolutional layers

of spatial and temporal DCNNs. Furthermore, we also introduced a bird video dataset VB100
which consists of 1,416 video clips of 100 bird species. A systematic comparison of state-of-
the-art DCNN based approaches is performed on the VB100 bird dataset. These experiments
demonstrate the effectiveness of our proposed novel spatial and temporal co-occurrence features
which outperform other previous state-of-the art algorithms including 3D ConvNets and the

Two-Stream approach.

7.2 Future Work

Although multiple aspects are covered in this thesis, there are still many to be explored in the

future work.

1. For ne-grained bird classi cation, numerous bird pictures are available on the internet.
Semi-supervised or unsupervised labelling could automatically annotate large numbers
of birds images and provide numerous training images. Such an approach would likely to
lead to considerable performance improvements as it would provide orders of magnitude
more data to train deep networks which are known to require an enormous amount of

labelled data.

2. Furthermore, multiple information source fusion is a interesting direction to explore.
We have shown the potential of combining temporal information for ne-grained bird
classi cation and much more work could be conducted in this area. Also, for plants or
sh classi cation tasks, prior knowledge about the geographical location of the image

being taken is extremely important to Iter out any irrelevant results.

3. For the algorithm perspective, our proposed subset-based learning system was able to

group bird classes in terms of visual appearance. It is interesting to explore alternative
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features such as pose and background information to initialise those clusters and observe

the impact for the nal classi cation results.

4. Close the gap between the ne-grained classi cation and general classi cation is a trend
in the near future. Many proposed algorithms for ne-grained image classi cation have
been proven to be useful for other classi cation tasks such as texture and scene classi -
cation. Furthermore, recent proposed methods for ne-grained bird classi cation can be
trained without explicit parts annotations, which make the training objective same as the

general image classi cation (with a single image class label).
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