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Abstract

The general object classi�cation task distinguishes very different object categories, such as a

house and a bird. In contrast, �ne-grained image classi�cation aims to answer the question of

given a bird image: which bird species is it? In a more speci�c way, it is about species and

sub-category classi�cation.

This is a challenging task for two reasons. Firstly, some classes (species) from the same

category, such as �sh, have a very similar appearance leading to low inter-class variation.

Secondly, a high degree of variability is prone to occur even within the same class due to

large pose, lighting, and illumination variations in the natural environment. To deal with these

challenges, much of the work has proposed parts-based modelling to explicitly or implicitly �nd

local parts and attributes to locate subtle differences in appearance across species.

This thesis explores methods to improve �ne-grained classi�cation. Firstly, we present a

novel method to deal with intra-class variability by extending the idea of inter-session vari-

ability modelling (ISV), used for face recognition, to the �ne-grained classi�cation task. We

extend ISV by modelling local variations (local ISV) and empirically demonstrate that this

considerably improves performance. Next, we introduce an automatic subset pre-clustering

framework which allows us to learn discriminative features for each subset (subset feature

learning). Subset feature learning allows us to learn features speci�c for each subset. This leads

to considerable improvements in performance, however, its performance is limited by its ability

to select the correct subset at test time. To overcome this limitation we present a mixture of deep

convolutional neural networks (MixDCNNs) which probabilistically assigns each sample to a

subset. Finally, we explore the usage of both spatial and temporal information and demonstrate

the potential gains that can be made for the task of �ne-grained bird classi�cation.
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Chapter 1

Introduction

1.1 Overview

Nowadays, countless multi-media resources are being uploaded by people around the world to

the Internet everyday. There were about 880 billion images being taken and uploaded in 2014.

It brings us a major challenge to analyse and understand all these images. Image classi�cation,

speci�cally object classi�cation, serves as an automatic way to interpret, understand and process

images. Object classi�cation has been a major focus of research in the computer vision and

machine learning communities in the last decade [Fergus et al., 2003, Krizhevsky et al., 2012,

Perronnin et al., 2010]. It focuses on identifying objects in images. For example, an image

showing a persian cat is classi�ed with a cat label. Many real-world applications based on

object recognition have been developed for the purpose of automatic image tagging, image

captioning and user interest analysis [Chen et al., 2013, Karpathy and Fei-Fei, 2015].

General object classi�cation is limited in its ability to understand image content at a deeper

level. For example, answering the question of whether a bird is presented in the image is easy,

but to tell which bird species is presented is impossible using a general objection classi�cation

system. Because constructing an object classi�cation system to recognise bird species requires

considerable domain expertise to design a classi�er that transforms the raw pixel values of an

image into a representation which could detect and classify a speci�c pattern between several

visually similar bird species. Recently, there has been an increasing interest in the research

of sub-category classi�cation, also known as �ne-grained classi�cation. Fine-grained classi-

�cation is a relatively new �eld and serves as a sub-�eld for object classi�cation research.

7
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class 1 class 2

class 3 class 4

class 1 class 2

class 3

General Object Classification Fine-Grained Classification

Figure 1.1: Figure shows the concept of general object classi�cation versus �ne-grained
classi�cation. The general object classi�cation usually refers to distinguishing very different
object categories such as a car category and a house category. In �ne-grained classi�cation
problem, all classes belong to the same basic category, but are different bird species.

Distinct from general object classi�cation, which aims to �nd the correct overall category such

as a bird, dog or plant, �ne-grained image classi�cation aims to identify the particular sub-

category [Belhumeur et al., 2008, Kumar et al., 2012, Liu et al., 2012, Parkhi et al., 2012] One

typical example for �ne-grained classi�cation is bird classi�cation. The difference between

object classi�cation and �ne-grained classi�cation is illustrated in Figure. 1.1.

The objective of �ne-grained object classi�cation is to identify what sub-category (species)

is present. It enables human beings to further extend image and video understanding by provid-

ing greater detailed information about the objects present in the image or video. For instance,

video cameras embedded with a bird classi�cation algorithm could be used to recognise a rare

bird species as well as endangered species. Another example is a food classi�cation system

installed in mobile phones can help obese people to calculate and control calorie consumption.

While general image classi�cation has progressed at a rapid pace in the past few years, it is

still a challenging task to perform accurate �ne-grained classi�cation of object sub-categories.

There are three aspects that make �ne-grained image classi�cation a challenging computer

vision problem, which are illustrated by taking bird species as an example, see Figure. 1.2.

The �rst challenge is the large variations in pose, illumination, and environments within the

same species (intra-class variation). Birds usually live in outdoor environments across various
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Figure 1.2: Example images from the bird dataset which exhibit large intra-class variations and
low inter-class variations. Each column represents a unique class.

habitats such as tropical forests, coastline and urban areas. Therefore, photos are taken under

different scenarios with day-time and night-time light changes. The second challenge is the

subtle differences between some bird species (inter-class variation). Some bird species have

identical shapes. Sometimes they even share very strong colour and texture similarity. The

third challenge is the limited number of annotated images available for each species. It is

very dif�cult for humans without expert knowledge of birds to annotate ground-truth labels for

images and videos.

1.2 Research Questions

The research objective of this thesis is to investigate a general and robust �ne-grained classi�-

cation system to categorise different sub-categories in challenging scenarios. This is critical for

establishing a more detailed understanding of the visual world. The main question this thesis

aims to answer is: “How can images or videos of sub-categories in challenging scenarios be

robustly classi�ed?” This broad question can be broken into three smaller sub-questions.

� “Can we model different instances of the same class under various environments (large

intra-class variations)?”
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For �ne-grained classi�cation, the same class can differ considerably in appearance (see

Figure. 1.2). In the �eld of biometrics, such as face and speaker veri�cation, probabilistic

models such as inter-session variability modelling have been proposed and obtained good

results. We explore these techniques for �ne-grained �sh and food recognition tasks.

In visual biometrics, there is a strong assumption that all images are well-controlled

regarding lighting, distance from camera, viewpoint etc. This remains a challenge in

�ne-grained classi�cation because the images are taken in uncontrolled environments

where nuisance from background noise and motion blur is presented. To deal with those

challenges, we extend the session variability modelling into a local region based model

where subtle session variations in local regions are better modelled.

� “Can we learn robust and discriminative features in order to classify �ne-grained classes

which have small inter-class variations?”

Fine-grained tasks are challenging due to the subtlety of their class differences. In order

to distinguish visually similar classes, it is important to generate discriminative feature

representations for different classes. Pre-clustering similar classes into one subset and

learning subset-speci�c features for each subset can substantially improve the capacity of

feature representation and make it possible to learn more discriminative features in order

to distinguish classes which have high visual similarities.

� “Can we exploit temporal information available in videos to improve robustness of �ne-

grained classi�cation?”

Prior work treats the �ne-grained classi�cation task as a still-image classi�cation problem

and ignores the large number of videos available of different �ne-grained classes. The

videos are a rich resource in terms of complementary temporal information and extra

training samples regarding different poses and viewpoints. We examine these questions

by evaluating multiple DCNN architectures that each take a different approach to com-

bining information across the time domain. We apply the bilinear DCNN in a novel

manner to jointly exploit spatial and temporal information. In brief, we aim to investigate

information and decision fusion techniques of different sources based on the assumption

that multi-classi�cation systems complement each other.
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1.3 Contributions

The main contributions of this thesis are summarised as follows:

1. We apply inter-session variability (ISV) modelling to �ne-grained classi�cation of two

datasets: �sh swimming in a natural environment, and different types of food on plates in

a table setting. We demonstrate that the proposed system can achieve better performance

compared to traditional previous approaches. We then propose a novel extension to ISV

which is called local ISV, so that local region based inter-session variations could be

modelled. We then introduce deep convolutional neural network (DCNN) to generate

low-dimensional feature representations in conjunction with the local ISV model (see

Chapter 3).

2. We propose a novel hierarchical learning framework, which operates in a fully automatic

manner and can be used to learn discriminative subset-based classi�ers and features

for the �ne-grained classi�cation problem. Unsupervised pre-clustering is performed to

split visually similar classes into subsets and subset-speci�c features are then learnt and

classi�ers for each subset (see Chapter 4).

3. Leveraging the previous work in subset feature learning, we propose a model that can

probabilistically combine multiple DCNNs where each DCNN has been trained on a

subset. To do so, a novel mixture of DCNNs is proposed (MixDCNN) which allows

us to jointly train an end-to-end network. It obviates the performance loss of two stage

hierarchical system by making the �nal classi�cation decision summed up from each

DCNN component weighted proportionally to the con�dence of its decision (see Chapter

5).

4. We introduce the problem of video-based �ne-grained object classi�cation, and explore

several methods to exploit the temporal information. A corresponding new dataset is

proposed to evaluate the proposed bilinear DCNN, which extracts local co-occurrences

by combining information from the convolutional layers of spatial and temporal DCNNs

(see Chapter 6).
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1.4 Outline

Much of the work in this thesis has been peer reviewed and published as conferences papers.

The outline of the thesis is as follows:

Chapter 2 presents an overview of prior work in object and �ne-grained classi�cation. It

examines contributions to the core aspects of �ne-grained classi�cation problem: supervised

and unsupervised parts modelling, feature engineering, transfer learning, and lastly reviews,

video classi�cation and lastly reviews the current datasets being evaluated for �ne-grained

classi�cation.

Chapter 3 introduces local region based inter-session variability (ISV) modelling using

deep convolutional neural networks (DCNNs). Two contributions are made. First we introduce

the concept of local inter-session variability modelling by partitioning each image intoN by

N regions (R1; :::; RN 2 ) and learn a separate ISV model for each local regionRi . Second, we

introduce bottle-neck features for DCNNs so that a low-dimensional DCNN representation can

be used in conjunction with the ISV model; the DCNN features are usually high dimensional

D = 4096 and we show that this can be reduced toD = 128 dimensions using the proposed

bottle-neck features. We then demonstrate the ef�cacy and effect of this technique on a chal-

lenging real-world �sh dataset which includes images taken underwater. We also use it on

a database of food images taken by mobile devices, providing signi�cant real-world session

variations.

Having discussed the importance of local modelling approaches in two related applications,

Chapter 4 discusses the potential of using hierarchical clustering for �ne-grained classi�cation.

In the �rst part of Chapter 4 we present a novel method for �ne-grained image classi�cation

for bird species based on a hierarchical structure. Our automatically generated hierarchical

system is inspired by the idea of forming a similarity tree where classes with strong visual

correlations are grouped into subsets. An expert local classi�er with strong discriminative power

to distinguish visually similar classes is then learnt for each subset. In the second part we

propose a learning system which learns deep convolutional neural network (DCNN) features

speci�c to each subset to learn a more discriminative feature representation.

Chapter 5 presents a novel deep convolutional neural network (DCNN) system for �ne-

grained image classi�cation, called a mixture of DCNNs (MixDCNN). We provide a formula-

tion to perform joint end-to-end training of multiple DCNNs simultaneously. The output from
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each of the DCNNs is combined to form a single classi�cation decision. This is in contrast to

subset feature learning in Chapter 4, where each expert is used only for feature extraction. We

evaluate this proposed MixDCNN system on bird and plant datasets. It outperforms previous

state-of-the-art subset feature learning system and general ensemble DCNNs.

In Chapter 6, we present the novel task of video-based �ne-grained object classi�cation,

and perform a systematic study of several recent deep convolutional neural network (DCNN)

based approaches, which we speci�cally adapt to the task. We evaluate three-dimensional

DCNNs, two-stream DCNNs and bilinear DCNNs. Two forms of the two-stream approach are

used, where spatial and temporal data from two independent DCNNs are fused either via early

fusion (combination of the fully-connected layers) and late fusion (concatenation of the softmax

outputs of the DCNNs). For bilinear DCNNs, information from the convolutional layers of the

spatial and temporal DCNNs is combined via local co-occurrences. We then fuse the bilinear

DCNN and early fusion of the two streams to combine the spatial and temporal information at

the local and global level (Spatio-Temporal Co-occurrence). These algorithms are evaluated on

the new and challenging video dataset of birds which we have developed and released.
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Chapter 2

Literature Review

Object classi�cation and �ne-grained classi�cation differ signi�cantly. For general object clas-

si�cation problems, category differences are salient because the object types and attributes are

distinct from each other. For instance, to distinguish a car from a house, it is easy to locate

the differences in multiple aspects such as texture and shape. By contrast, for �ne-grained

classi�cation the differences between classes are visible due to subtle changes in terms of

colour, texture and shape because they belong to the same category (such as bird species). In

this chapter we will present an overview of related work to object classi�cation and �ne-grained

classi�cation.

Object classi�cation has been a major focus of research in the computer vision and machine

learning communities in the last decade, and considerable progress has been made [Fergus

et al., 2003, Gehler and Nowozin, 2009, Krizhevsky et al., 2012, Mutch and Lowe, 2008,

Perronnin et al., 2010, Ponce et al., 2006]. A variety of techniques have been proposed and have

achieved impressive results on some popular datasets such as the PASCAL VOC dataset [Ev-

eringham et al., 2010] and Caltech 256 [Grif�n et al., 2007]. These techniques include feature

encoding methods such Fisher vectors (FV) [Perronnin et al., 2010] and Histogram Encod-

ing [Chat�eld et al., 2011] through to the more recent advent of deep learning [Krizhevsky

et al., 2012].

A sub-�eld of object classi�cation called �ne-grained classi�cation has made great progress

in recent years [Kumar et al., 2012, Parkhi et al., 2012, Wah et al., 2011b]. The prior work

in �ne-grained classi�cation can be roughly divided into two tracks. The �rst is to localise

the discriminative object parts in the image to compensate for nuisance variations such as

17
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pose.Many parts-based methods with geometric constraints have been proposed for bird classi-

�cation [Zhang et al., 2014], cars [Krause et al., 2014], and dogs [Parkhi et al., 2012]. Some of

the works explicitly use parts annotations from the dataset to train a strongly supervised parts

detector [Chai et al., 2013a, Krause et al., 2014, Zhang et al., 2014, 2013b] to reduce the effect

of the nuisance variations such as pose and viewpoint. However, these approaches often require

not only ground-truth bounding boxes of the bird's (or other �ne-grained object's) location but

also annotations which provide the location of interest parts. Labelling parts for hundreds or

thousands of �ne-grained domains is laborious and cost-prohibitive. It is an interesting research

direction to free the algorithm from detailed annotations. Recent work has examined ways to

alleviate this problem by exploring methods to derive weakly supervised or unsupervised parts

detection models [Goring et al., 2013, Jaderberg et al., 2015, Krause et al., 2015b, Lin et al.,

2015].

The second track is to derive discriminative and robust features. Classic hand-crafted feature

descriptors such as the Scale Invariant Feature Transform (SIFT) [Lowe, 2004a], Histogram

of Oriented Gradients (HoG) [Dalal and Triggs, 2005a], and Color Histogram [Van De Weijer

et al., 2009] which take advantage of color, texture and edge information have been successfully

translated from general object classi�cation to the �ne-grained classi�cation domain [Duan

et al., 2012, Yao et al., 2011]. Others methods such as the Part-based One-vs-One Features

(POOFs) [Berg and Belhumeur, 2013] focus on modelling corresponding parts activation, and

have been derived speci�cally for �ne-grained classi�cation. More recently, deep convolutional

neural network (DCNN) approaches for general object classi�cation have been transferred to

achieve state-of-the-art performance for �ne-grained classi�cation by applying transfer learn-

ing [Krause et al., 2015b, Xu et al., 2015, Zhang et al., 2015]. Below we describe the prior work

within these two tracks and then summarise progress that has been made in video classi�cation,

an area that is explored within this thesis. We then end with a review of datasets relevant for

�ne-grained classi�cation.

2.1 Parts-based Modelling

Many of the categories, such as animals and �owers, that �ne-grained image classi�cation is

applied to are highly deformable. This has led researchers to examine the potential to localise

the relatively rigid parts prior to performing classi�cation, because this may ameliorate the
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negative effects caused by pose and viewpoint variations. Methods that perform parts-based

modelling can be split into two categories: (i) supervised approaches which learn to recognise

the parts from an annotated dataset and (ii) unsupervised approaches which attempt to learn

consistent parts from a given dataset.

2.1.1 Supervised Parts Modelling

Supervised parts modelling refers to a setting where parts labels or keypoints are explicitly

provided when training a model. We review a keypoint-based model where the explicit location

of each annotation (such as beak, right eye, left eye of bird) is used to either train a poselets

model [Bourdev and Malik, 2009] or keypoint-based segmentation [Xie et al., 2013]. Then we

move onto a parts-based model which focuses on patch-based parts modelling [Zhang et al.,

2013b]. Lastly, we brie�y mention the “human in the loop” method where users are required to

give feedback to the computer during the model training and testing process [Wah et al., 2011a].

Keypoint-Based Model

Keypoint-based methods like poselets [Bourdev and Malik, 2009] are helpful to localise dis-

criminative parts of objects. Poselet is a pose estimation method based on the correspondence

of con�guration in addition to appearance of the object parts. The key idea is to de�ne parts that

are tightly clustered both in con�guration space (which can be parametrized by the locations of

various keypoints) and in appearance space (can be parametrized by pixel values in an image

patch). The poselets are created by a search procedure. A patch is randomly chosen in the image

of a randomly picked object (the seed of the poselet), and other examples are found by searching

in images of other objects for a patch where the con�guration of keypoints is similar to that in

the seed. Given a set of examples of a poselet, which are, by construction, tightly clustered in

con�guration space, HoG features are computed for each of the associated image patches. These

are used as positive examples for training a linear support vector machine (SVM). At test time,

a multi-scale sliding window is used to �nd strong activations of the different poselet �lters.

Such an approach was implemented by Farrell et al. [2011] for birds as birdlets. Their model

associates the underlying image patterns with volumetric part locations. Birds in images are

then modelled by a con�guration of volumetric parts. This work was later extended by Zhang

et al. [2012], with the contribution that the parts model was learnt with fewer representational
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assumptions. This method is able to compensate for variations in pose and different camera

viewing angles by using the ensemble of responses of speci�c pose-keypoint con�gurations.

Transferring parts or keypoints to novel datasets is another active research �eld in computer

vision. One example is exemplar-based method proposed by Liu et al. [2012]. Belhumeur

et al. [2011] on localising �ducial points in human faces, Liu et al. [2012] predict accurate

locations of dog eyes and noses by learning exemplar-based geometric and appearance models

from the dog training dataset. However, this method is parametric-based and is sensitive to

novel samples. Goring et al. [2013] proposed a non-parametric parts transfer method. The

method is very simple but has strong non-linearity. To locate parts of the test sample, �rst the

similar overall layout of the object of interest is found using the training dataset with HoG as

features. After that, the parts locations are obtained from the annotations ofK training images,

which are scaled proportionally to the bounding box of the test image. This non-parametric

parts model can alleviate the high variation in part positions that arises from the large number

of different poses of objects in a limited number of images. The advantage of non-parametric

methods allows for coping with high degree of pose and view variations in unseen images where

traditional detection models like deformable part model (DPM) [Felzenszwalb et al., 2010]

and exemplar-based method fail. This is valuable for �ne-grained problems because intra-class

variations are extremely high.

Deformable Models

Another widespread object detection approach to performing parts localisation is the deformable

model approach. An example of this is the DPM [Felzenszwalb et al., 2010] which is an object

detection system based on a set of multi-scale individual part models, see Figure. 2.1. This

concept can be described by the equation:

E DP M (I; model) = F root � �( I; p0) +
NX

n=1

Epart (pn ; I; model) (2.1)

Epart (pi ; I; model) = F model
n � �( I; pn ) � � d(dxn ; dyn ) (2.2)

whereE or E DP M or Epart can be interpreted as the matching score between a trained model

and a given imageI . The trained root model and then-th part model are described byFroot and

F model
n . The feature vector at locationpn in an image is de�ned as�( I; pn ). To penalize the
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Figure 2.1: Figure shows the concept of DPM model. The model is de�ned by a coarse root
�lter and several higher resolution part �lters. Felzenszwalb et al. [2010]

atypical geometric con�gurations,� d(dx; dy) is a quadratic function to calculate the relative

location of the part and the root.

Several early works on parts-based �ne-grained classi�cation adapted this approach to their

problem [Chai et al., 2013a, Parkhi et al., 2012, Zhang et al., 2013b]. Parkhi et al. [2012]

used DPM to localize the heads of cats and dogs to create the head mask. This methodology is

relatively effective when objects have limited pose variation. Chai et al. [2013a] demonstrated

that the synergy between segmentation and DPM-based detection can be leveraged to create one

framework to alleviate the background noise and large pose variations, which can be bene�cial

to �ne-grained image classi�cation. However, an issue with the DPM approach is that the

distance term is a Gaussian-based model for the part locations. Goring et al. [2013] analysed

this and concluded that the distribution of parts is not Gaussian for CUB-200-11 [Wah et al.,

2011b], a frequently used �ne-grained bird database. Thus, a simple Gaussian distribution does

not have enough capacity to model the pose variations.

Zhang et al. [2013b] proposed the deformable part descriptors (DPD) based on DPM. It

applies semantic pooling on a weakly-supervised DPM based on weights learnt from training

data. This process avoids using the hard assignment of a distance term for each detected

part. Therefore, the DPD enables pooling across pose and parts without following a Gaussian

distribution, which facilitates tasks such as �ne-grained recognition. The overview of the

method can be seen in Figure. 2.2.

More recently, deep learning has made considerable progress in detection [Girshick et al.,
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Figure 2.2: The DPD [Zhang et al., 2013b] pose-normalised descriptor is generated by pooling
the result of the DPM part localisation result. These results are pooled into regions which are
then concatenated together to form a single feature vector.

2014, Sermanet et al., 2013], and this has been translated to the �ne-grained domain. An

example of this is the region-based deep convolution neural network (R-CNN) framework.

This is a two-stage framework where the �rst stage provides regional proposals by using a

method such as edge boxes [Zitnick and Dollár, 2014] or selective search [Van de Sande

et al., 2011]. In the second stage features are extracted from each region proposal using a

deep convolutional neural network. These are then classi�ed using a multi-class SVM. Zhang

et al. [2014] adapted the R-CNN approach to �ne-grained bird classi�cation by learning a deep

representations of parts with extra geometric constraints to improve the accuracy of bird and

semantic parts detection. However, errors are likely to accumulate in the �rst regional proposal

stage, leading to overall performance loss. To address this issues, Zhang et al. [2015] proposed

an end-to-end deep convolutional network (DCNN) to perform parts detection and classi�cation

simultaneously by using a spatially �ne-grained detection model.

Human in the loop

Other works show impressive results with “ human in the loop ” to assist �nding discrimi-

native parts or keypoints for �ne-grained image classi�cation. Wah et al. [2011a] proposed

an approach that relied on human assistance to give binary answers to the predicted interesting

locations of an object. These responses were used to generate a discriminative feature descriptor

from those points to increase the classi�cation accuracy. Deng et al. [2013] proposed an
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interactive game requesting the user to �nd the most discriminative parts to help boost the

performance of the classi�er, and a method proposed by Parikh and Grauman [2011] discovers

discriminative image parts by machine learning at the �rst stage and then asks users to manually

correct and name them. A part-to-part based pairwise comparison mechanism is then applied

to boost the classi�cation accuracy. However, these methods are always restricted to small

datasets since human input is time-consuming and requires expert knowledge. Nevertheless,

it remains an open question in �ne-grained image classi�cation whether it is more critical to

accurately localise corresponding locations over object instances or simply have the ability to

capture detailed information [Gavves et al., 2013].

2.1.2 Unsupervised Parts Modelling

The previous methods for parts modelling require laborious manual annotation of images. By

contrast unsupervised parts modelling provides a more realistic setting for real applications.

Gavves et al. [2013] demonstrated a region partition method to describe parts. Their work

showed that performing accurate localisation of parts was unnecessary as simply dividing the

detected foreground image into a grid of regions provided similar results. The core idea of this

method is that �ne-grained classes such as birds normally share considerable shape and appear-

ance similarities. Therefore, exterior shape can be used as a strong signal to locate relative part,

Figure 2.3 provides two examples of this. From the segmentation result of GrabCut [Rother

et al., 2004], unsupervised parts localisation can be calculated with the following:

�xs + ej

p
� j (2.3)

wherexs is the average location of the segmentation pixels and�j andej are thej -th eigenvalue

and eigenvector of the(xs � �xs)T (xs � �xs) covariance matrix. This model approximates the

shape of the object as an ellipse and this ellipse should follow the “spine” of the object. The the

three rough parts, head, body, and tail are then roughly segmented.

Duan et al. [2012] proposed a CRF approach to automatically �nd discriminative body parts

of animals and their support regions by employing a latent CRF model to discover candidate

parts. Yang et al. [2012] provide an unsupervised approach to localise parts of the bird by

using template learning and matching. In this approach, a template represents a shape and

texture pattern and the relationship between two patterns is captured by the relationship between
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Figure 2.3: A rough shape is aligned in the middle column pictures. Then based on
the alignment results, the shapes are split in the right column pictures equally along the
principal axis to get consistent regions. The red and purple regions represent head and tail
respectively [Gavves et al., 2013].

templates. This re�ects the probability of co-occurrence in the same image. Krause et al.

[2015a] achieve good performance on �ne-grained bird and car classi�cation without using any

speci�c parts labels. They propose a method applying co-segmentation to perform pose and

parts alignment. Current state-of-the-art of �ne-grained bird classi�cation performance without

using parts are proposed by Jaderberg et al. [2015]. The method is called “spatial transformer

network”. It allows the spatial manipulation of data on the existing convolutional neural network

with a differentiable module inserted. By properly modifying the localisation network, it can

localise the discriminative parts of the �ne-grained object. It guarantees the discriminability of

the parts detected by driving an end-to-end learning of transformations.

2.1.3 Summary

The motivation to use local parts information is that some �ne-grained classes often share the

same parts such as wings, legs and heads for bird species.

Many methods have been proposed to make use of parts-based information which have

already been annotated, a supervised setting (see Sec.2.1.1). These methods assume that this

prior knowledge provides crucial information to discover corresponding patches of the image

which are discriminative for the �ne-grained classes.

The �rst concern with using parts annotation for large-scale recognition is that it requires
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considerable time and effort to annotate. This motivated the works described in the unsuper-

vised parts annotation (Sec.2.1.2). The methods described in that section overcome this issue by

either only using annotation information at the training stage or deriving methods that require

minimal annotation information (just a bounding box). These unsupervised approaches are

promising due to the potential to enable widespread deployment.

The second concern is that the annotated parts may not contain the most discriminative

information to distinguish �ne-grained classes. For example, to distinguish an Africa crow and

an America crow, the texture from local parts does not give much useful information. Instead,

the shape of the whole bird should be considered. This case leads to one opinion that different

birds may need different features to describe them in order to get the best accuracy for the

classi�cation.

2.2 Feature Engineering

Several different feature descriptors proposed for general image classi�cation have been directly

applied for �ne-grained image classi�cation in some pioneer works. Most of these are the

classic hand-engineered features that have been used for general object recognitions, includ-

ing: Scale Invariant Feature Transform (SIFT) [Lowe, 2004b], Speeded-up Robust Features

(SURF) [Bay et al., 2006], local binary pattern (LBP) [Ojala et al., 2002], and Histogram

of Oriented Gradients (HoG) [Dalal and Triggs, 2005b]. Later classic features were found

to be suffering from the problem of losing subtle differences between inter-class variations.

To generate more discriminative feature representations, feature encoding methods such as

POOF proposed by Berg and Belhumeur [2013] are implemented to perform �ne-grained bird

classi�cation. Recent advances in deep learning have led to state-of-the-art results for large-

scale object classi�cation [Krizhevsky et al., 2012]. These advances coupled with developments

in transfer learning [Donahue et al., 2014] have led to the applicability of these features to �ne-

grained classi�cation problems.

2.2.1 Hand-crafted Features

Hand-crafted features refer to manually designed features to extract global or local information

from the image and generate effective representations. There are many manually designed
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features in computer vision for general object classi�cation. SIFT was proposed by Lowe

[2004b]. It is a descriptor that accumulates the statistics of gradients of a circular image patch.

Each image patch is partitioned into several local regions where the histogram of the orientations

of the gradient is formed in each of the regions. The descriptor is formed with the concatenation

of all the histograms. The HoG feature [Dalal and Triggs, 2005b] is similar to SIFT, but differs

in that it is computed on a dense grid of uniformly spaced cells and uses overlapping local

contrast to normalize the feature vector. LBP [Ojala et al., 2002] was originally designed for

text recognition. It is a simple yet very ef�cient texture operator which labels the pixels of an

image by thresholding the neighbourhood of each pixel and considering the result as a binary

number. Numerous hand-crafted features have been directly or indirectly implemented for �ne-

grained image classi�cation. Hand-crafted features such as SIFT and HoG are most commonly

used for �ne-grained image classi�cation [Brown et al., 2011, Hariharan et al., 2012, Yao et al.,

2012]. One of the major challenges to directly apply hand-crafted features in �ne-grained

tasks is that traditional feature descriptors tend to encode the global salient differences between

two categories, but it sometimes fails to catch the subtle differences between two �ne-grained

classes.

2.2.2 Feature Encodings

In order to enhance the standard histogram of quantised local features and retain more informa-

tion about the original image features, several feature encoding techniques have been proposed

for general object classi�cation in the last decade [Perronnin et al., 2010, Sánchez et al., 2013].

Encoded features such as bags of visual words (BoV) [Csurka et al., 2004] and Fisher vector

(FV) encoding [Perronnin et al., 2010] are widely used in some �ne-grained tasks [Gavves et al.,

2013, Gosselin et al., 2013, Philippe and Naila, 2012]. The typical feature encoding system is

composed of the following two steps:

1. Extract local features, such as SIFT and HoG, from images and videos.

2. Summarise the set of local features such as through vector quantisation.

Below we describe the commonly used encoding methods for �ne-grained classi�cation:

hard-coded BoV, soft-coded FV, and Part-based One-vs-One Features (POOFs). We also present

inter-session variability modelling (ISV) which is a Gaussian based probabilistic modelling,
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Detect afÞne covariant regions Represent each region by a SIFT descriptor Build visual vocabulary 

Figure 2.4: BoV feature encoding.

similar to FV, that is often used in face and speaker recognition [Vogt and Sridharan, 2008,

Wallace et al., 2011].

Bags of Visual Words

BoV, as the name suggests, extracts a set of local patches and quantises the local descriptors

into a �nite set of elements to form a histogram. This method extracts and encodes a set of

local descriptors, such as SIFT descriptors [Lowe, 2004b]. It assigns each descriptor to the

closest entry in a codebook learned of�ine by clustering all local descriptors with k-means.

This procedure is described in Figure. 2.4. The BoV method has been extended to include soft

assignment [Philbin et al., 2008] and to use spatial pyramids so that multi-scale and spatial

information can be captured [Lazebnik et al., 2006].

Fisher Vector

FV encoding summarises all of the features using the �rst and second order differences. It

comes from the Fisher Kernel (FK) [Jaakkola et al., 1999]. In brief, it consists of characterising

an image sample by its deviation which is measured by the sample log-likelihood with respect

to the model parameters from the generative model. In comparison to BoV the codebook is

represented by a mixture of Gaussians. A GMM is commonly used as a “probabilistic visual

vocabulary”. The FV representation has many advantages over the popular BoV framework.

Firstly, BoV is a special case of FV where all clusters share the same weights. Secondly, FV

can be trained more quickly and on smaller vocabularies with no performance loss. Finally,

it works well with linear classi�ers which are very ef�cient to learn [Bottou and Bousquet,
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Figure 2.5: Images from the SCface [Grgic et al., 2011] database. Signi�cant variations are
present between images.

2011]. Chai et al. [2012] extracted features based on classi�cation-oriented encodings and

Fisher vectors. Gavves et al. [2013] implemented Fisher vectors not only globally, but also

on localised appearance descriptors. Gavves et al. [2013], the state-of-the-art performance is

achieved by using FV with colour SIFT features [Van De Sande et al., 2010].

Gaussian Mixture based Session Modelling

While FV uses a GMM as a visual vocabulary to represent difference classes, session variation

modelling aims to model why different instances of the same class (object) appear differently.

Session variation within each class caused by pose and illumination variation has been a con-

stant issue for classi�ers in computer vision. It causes one instance of a class to look different to

another image of the same class. Causes of session variation include: appearance, illumination

and pose variations. Example images with some of these variations are in Figure 2.5. In speaker

authentication, various microphones and noisy transmission channels can cause the variation.

A number of techniques have been proposed to compensate for various aspects of session

variability in the veri�cation process. Some early work on speech veri�cation [Wand and

Schultz, 2011] focus on Gaussian Mixture Model (GMM) based models to model the effect

of session differences and suppress session variation. The GMMs represent each observation as

the combination of a session-independent speaker model with an additional session-dependent
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Figure 2.6: This picture shows two references species' images are aligned according to chosen
parts �xed locations [Berg and Belhumeur, 2013].

offset of the model means. The formulation of a GMM based session variation modelling can

be represented as follows:

S = m + Uxij + Dz i (2.4)

Super-vectorm is the concatenation of the GMM component mean vectors whilex ij is a low-

dimensional representation of the variability of classi with instancej . And U is the low-rank

transformation matrix from the constrained session variability sub-space.D is a diagonal matrix

that incorporates the relevance factor, andzi is a latent variable with norm distribution. Ideally,

we would like a session variation modelling algorithm that can accurately discern the session-

independent speaker. Recently, inter-session variability modelling (ISV) and joint factor anal-

ysis (JFA) are the two most successful techniques in session variation modelling [McCool

et al., 2013, Vogt and Sridharan, 2008, Wallace et al., 2011]. ISV and JFA have been applied

successfully to both speaker Vogt and Sridharan [2008] and face veri�cation [McCool et al.,

2013]. ISV aims to suppress session variation by explicitly modelling and removing within-

client variation using a low-dimensional subspace while JFA also considers the between-client

variation.

Part-based One-vs-One Features

Berg and Belhumeur [2013] proposed a framework to learn a large set of discriminative intermediate-

level features called Part-based One-vs-One Features (POOFs) specialised for a set of parts for

�ne-grained classi�cation. It is a fully automatic way to learn POOF based features on any

reference dataset. Berg and Belhumeur [2013] randomly train pair-wise classi�ers by choosing

reference pairs from the data set with parts alignment as shown in Figure 2.6. Given parts

locations of labelled images, a POOF is de�ned to specify two classes. All training samples of
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Figure 2.7: Typical CNN architecture with CONV, FC and POOL layers

two classes are aligned to �x locations of two chosen parts. Small cells with multiple scales are

generated where base features are extracted. The maximal connected components contiguous

to the chosen parts are selected by using a linear classi�er. The one-vs-one POOF feature is

extracted based on the base feature values from the support region.

2.2.3 Deep Networks

A recent trend in computer vision has been to learn features directly from datasets by applying

a class of techniques known as deep learning. An example of this is deep convolutional neural

networks (DCNNs), see Figure. 2.7. DCNNs were initially proposed by Le Cun et al. [1990]

to recognize handwritten notes. It attempts to model high-level abstractions in data by using

architectures composed of multiple non-linear transformations. A DCNN is a type of feed-

forward arti�cial neural network with individual neurons tiled in such a way that they respond

to overlapping regions in the visual �eld. CNNs carry out sub-sampling of images so that

computing time can be reduced. At each convolutional layer, feature maps from the previous

layers are convolved with learnable �lters, which then go through a transaction function to form

new feature maps. An example of different feature maps in a CNN is shown in Figure. 2.8.

Each newly generated feature map can be viewed as a combination of multiple input maps.

Hinton et al. [2014], Krizhevsky et al. [2012] have shown that deep or layered compo-

sitional architectures are able to capture salient aspects of given images through discovery of

salient clusters, parts and mid-level features. Krizhevsky et al. [2012] reached state-of-the-

art performance in the ImageNet Large Scale Recognition Challenge (ILSVRC) in 2012 by

using DCNN. Such models are able to perform much better than some traditional hand-crafted

features [Le et al., 2011] by an absolute improvement of 10% on the classi�cation track. It
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Figure 2.8: Visualisation of feature kernels. The results are produced by using the
deconvolutional network approach proposed by Zeiler and Fergus [2013].

is believed that conventional hand-crafted features are limited in their ability to learn multiple

levels of abstraction. Donahue et al. [2014] tested a deep convolutional activation feature for

generic visual recognition (DeCAF) on Zhang et al. [2013a] DPD results and achieved state-of-

the-art performance on CUB200-2011 with 64.96% mean accuracy. In the following sections

�rst some typical layers in DCNNs will be described, case studies of various recent proposed

network architectures will be given the relevant details after.

Neural Network Layers

A typical deep learning architecture contains a stack of modules, an example of this is shown

in Figure 2.7. Often, each layer has a non-linear function applied to the output. The following

paragraphs describe the various neural network layers, commonly used for classi�cation tasks,

and their speci�c functions.

Convolutional Layer: The main purpose of a convolutional layer (CONV) is to identify the

local correlations of features from the previous layer. Each unit in a convolutional layer contains

a set of weights and is densely connected to local patches of the previous layer. Weights from

units are learnt through back-propagation training and are regarded as a �lter bank. In many

applied networks, outputs of a convolutional layer are fed into a pooling layer followed by a

non-linear activation function such as a recti�ed linear unit (ReLU) [Glorot et al., 2011a] to

increase non-linearity and regularisation.
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Pooling: To further reduce the number of weights produced by convolutional layers, an ad-

ditional sub-sampling layer often applied and is referred to as a pooling function [Le et al.,

2011]. Pooling functions (POOL) such as max-pooling or average-pooling are very useful when

generating statistical features over a small region. The reason for this is that images tend to have

the property of stationarity, that is, features that are applicable in one subregion are likely to be

applicable in other subregions.

Fully-connected Layer: A fully-connected (FC) layer is a typical layer to form a neural

network. A single FC layer has full connections to every single neurons from the previous

layer, thus more weights are retained in this type of layer. The activations can be computed

with a matrix multiplication followed by a bias offset. A FC layer can be easily converted into

a convolutional layer through treating every neuron in the FC layer as a1 � 1 feature kernel.

This is because both layers compute dot products, so their functional form is identical.

Softmax Layer: To calculate the score (probability) of each class in the neural network, a

Softmax layer is normally attached at the end as a classi�er. The Softmax classi�er is trained

to minimize the cross-entropy between the predicted class probabilities. The cross-entropy of a

Softmax layer is given as follows:

� log(
expf y i

P
j expf j

) (2.5)

whereyi is the corresponding class label andf j is the j-th element of the vector of class scores.

The function in the bracket is the Softmax function and gives greater emphasis to the class that

achieved the highest score as well as ensuring that the probabilities sum to 1.

Network Architecture Case Studies

In this section we brie�y introduce a few popular DCNNs architectures. These either produced

state-of-the-art results in the ImageNet challenge or are representative works demonstrating

recent advances for DCNNs.

AlexNet: This refers to the network described by Krizhevsky et al. [2012], and achieved sate-

of-the-art performance in the 2012 ImageNet classi�cation challenge (ILSVRC). The authors

trained a deep CNN consisting of eight layers (�ve CONV layers and three FC layers) using the

ImageNet dataset [Deng et al., 2009a]. On the basis of an optimized parallel training process,
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the CNN, consisting of more than one billion parameters, took approximately one week to learn

the ImageNet.

GoogLeNet: This structure was proposed by Szegedy et al. [2014] and was the winner of

ILSVRC 2014. The network is much deeper than the AlexNet containing 22 layers. The main

idea behind the GoogLeNet is the inception layer which combines information from multiple

scales and signi�cantly reduces the number of parameters by using 1 by 1 CONV layers in the

network. Apart from that, GoogLeNet is attached to three loss layers to propagate loss from

the early, middle and late layers of the network which is able to alleviate the issue of dying

gradients during back-propagation training.

VGGNet: The main contribution of VGGNet is to show that using �xed small �lter size (3

by 3) from the beginning to end can perform better than large kernel size networks such as

AlexNet and GoogLeNet. Additionally, it was found that VGGNet shows good generalization

in multiple transfer learning tasks [Long et al., 2015].

ResNet: Residual Network [He et al., 2015] is the latest winner of ILSVRC 2015. This high

performance model consists of 152 layers and uses batch normalization to compensate irrelevant

variations in every layer. The most important contribution of this architecture is the special

training method where shortcut connections are applied to several local layers to �t a residual

mapping. This technique allows easy optimisation even when more than one hundred layers are

presented.

Transfer Learning

A deep learning framework usually needs huge amounts of data to train in order for the cost

function to converge to a good local minimum point and avoid over�tting on the training set.

For some tasks such as �ne-grained classi�cation where the size of the dataset is signi�cantly

smaller than the ImageNet dataset, a process known as transfer learning [Donahue et al., 2014,

Glorot et al., 2011b] can be used as a powerful tool to enable training a large target network

without over�tting.

A typical way to perform transfer learning or domain adaptation is to train a network from

a general large-scale dataset, in which it is believed that features learned are fairly general, and

then �ne-tuning the network parameters on the target dataset. The reason why transfer learning
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works well on DCNN is that a DCNN is used to discover intermediate representations built

in a hierarchical manner, which means the learnt low-level or mid-level features are likely to

be quite general and so can be used to initialize other deep neural networks. Recent studies

have taken advantage of this fact to obtain state-of-the-art results in �ne-grained classi�cation

and a few other applications [Donahue et al., 2014, Zeiler and Fergus, 2013]. Donahue et al.

[2014] trained Deep Convolutional Activation Features (DeCAF) in ImageNet and achieved

signi�cantly better results in general object recognition on Caltech-101 [Fei-Fei et al., 2007],

domain adaptation on Amazon dataset [Saenko et al., 2010], �ne-grained recognition on CUB-

200, and scene recognition on SUN-397 [Xiao et al., 2010], compared to traditional non-DCNN

based methods.

Since transfer learning from a general dataset has proven to be an effective and ef�cient

method for various tasks, data expansion on the target dataset would add more discrimination.

Some researchers have started to use additional help from the Internet as an useful way to

expand their training dataset [Krause et al., 2015b, Xie et al., 2015, Xu et al., 2015]. Xie

et al. [2015] proposed a method to extend the �ne-grained vehicle dataset with external vehicle

data annotated by some hyper-classes. The performance has been further improved on their

�ne-grained car classi�cation with extra guidance to the learning process by exploring the rela-

tionship between the original �ne-grained vehicle class and the new hyper-class. Krause et al.

[2015b] further showed that training the DCNN-based model on publicly available noisy bird

images from the web with an active learning system and achieved state-of-the-art performance

on CUB200-2011 dataset. The performance of using extra 100,000 images has reached about

90% mean accuracy on the popular CUB200-2011 bird dataset, while using only 5,794 training

images resulted in 80.1% mean accuracy .

2.2.4 Summary

According to the recent literature of feature learning for �ne-grained classi�cation, there is

no clear line for features being used between general and �ne-grained classi�cation. In the

early stages hand-crafted feature descriptors such as SIFT and HoG were being used directly

for �ne-grained image classi�cation. Later on feature encoding methods replaced traditional

hand-crafted features and achieved much better performance. There were no speci�c features

designed for the �ne-grained problem as it was treated as a texture recognition problem.
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Compared to feature encoding with three steps of extraction, encoding and pooling, the re-

cent success of DCNN enables joint optimization of the whole pipeline, leading to signi�cantly

higher recognition accuracy in many object recognition tasks. Transfer learning is normally

conducted with the DCNN for the �ne-grained task, however, the DCNN �lters are initially

learned from general image classi�cation dataset.

It seems likely many of the �lters learned for the general image classi�cation are not helpful

to locate nuances in local parts since those �lters tend to capture, for example, shape and

repetitive patterns which are useful to distinguish general classes.

Another problem of using a pre-trained DCNN as a feature extractor is that fully-connected

layer is adapted as a pooling and encoding mechanism, resulting in high dimensional feature

vector and losing of spatial information, which is important to �nd local subtle differences for

various �ne-grained classes.

2.3 Video Classi�cation

Video classi�cation has been studied for decades in the computer vision community. Various

problems have been explored such as action recognition and video retrieval [Bendersky et al.,

2014, Blank et al., 2005, Schüldt et al., 2004]. We divide existing video classi�cation technolo-

gies into two tracks: those that describe videos by conventional hand-crafted features; and those

that describe videos by DCNN-based features.

2.3.1 Conventional Features

Traditional video classi�cation is a successful area in obtaining global descriptors that encode

both motion and appearance information. There are normally three steps to perform a video

classi�cation which are feature extraction, feature encoding and classi�cation. The �rst step is

to either densely or sparsely extract and aggregate features from local appearance and motion

using hand-crafted features [Liu et al., 2009, Sivic and Zisserman, 2003, Wang et al., 2009].

Several features such as SIFT, SIFT-3D [Scovanner et al., 2007], HoG, HoG-3D [Klaser et al.,

2008] or Histogram of Optical Flow (HoF) [Chaudhry et al., 2009], can be used as a dense

feature representation at this stage. Dense features require heavy computational cost and can

not easily used for real-time applications. One solution to this is to use sparse feature for video
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description. Sparse feature descriptors such as spatio-temporal interest points (STIPs) proposed

by Willems et al. [2008] and which is an extension of Harris corner detector is applied in some

video applications. Wang et al. [2013] proposed dense trajectories with hand-crafted features

and achieved good and fast performance for behaviour recognition. Then they improved their

work by showing that motion signals can be handled separately from the spatial signal [Wang

and Schmid, 2013]. In the next step, extracted features are encoded into a �xed-sized video-

level description. One of the popular encoding methods is through BoW. In video classi�cation,

BoW is used to learn a dictionary and accumulate the visual words into histograms of varying

spatio-temporal information. Other encoding methods such as FV (introduced in the previous

section) can also be applied for action recognition. The �nal step in the conventional model is

to train a multi-class SVM for the classi�cation task.

2.3.2 Deep Convolutional Based Model

In the previous section we introduced DCNN and their ability to automatically learn complex

features using a hierarchy of kernels and pooling operations, have proven highly successful

at still image classi�cation problems from the small dataset PASCAL-VOC [Everingham et al.,

2010] to the large scale dataset ImageNet [Deng et al., 2009b]. Some work attempts to use CNN

to encode both global and motion information for video classi�cation. To transfer DCNNs

from image classi�cation to video classi�cation task, we need to understand the difference

between them under a DCNN framework. The easiest way to implement the change to video

classi�cation is by extracting image-based or motion features from each frame and then pooling

all information across time to make video-level predictions. Karpathy et al. [2014] applied a

DCNN to extract features from every single frame and demonstrated strong performance over

several traditional video classi�cation methods (see Figure. 2.9). However, in this work the

pooling results of multiple frames is only marginally better than the single frame based method

which implies that learning motion features using DCNN is dif�cult. By contrast, Simonyan and

Zisserman [2014] incorporated motion information from optical �ow input with �xed inference

time. Tran et al. [2015] employed 3D based convolutional kernel video classi�cation. The per-

formance is superior compared to methods using traditional hand-crafted features. Encouraged

by those recent achievements, in this section we will brie�y review two related CNN-based

methods for video classi�cation.



2.3. VIDEO CLASSIFICATION 37

Figure 2.9: Figure shows early fusion (right) and late fusion (left) approaches to fuse
information over temporal dimension. Red bars represent convolutional layers, green represents
normalisation layers and blue represents pooling layers. [Karpathy et al., 2014]

Two-Stream Network

Simonyan and Zisserman [2014] proposed the two-stream network for action recognition. It

consists of two independent spatial and temporal convolutional networks. The architecture of

the network can be seen in Figure. 2.10. The spatial CNN operates the same as a still image

classi�er, making predictions on individual frames. It has proved that background and context

information is useful to recognise various actions since some actions have high correlations

with certain objects. The temporal CNN takes input from a stacked optical �ow maps between

consecutive frames. The optical �ow is able to explicitly describe the motion difference between

frame with intensity. The classi�cation result is obtained through a late fusion of two softmax

outputs of the independent networks. The downside of this method is in the restriction of the

number of inference frames for prediction. This results in similar performance when compared

to a single frame based CNN method.

3-Dimensional Convolutional Network

The deep 3-dimensional convolutional network (C3D) approach was proposed by Tran et al.

[2015] for action recognition. The network structure is similar to 2D CNN architecture except

all 2D convolution and pooling operations are replaced by 3D receptive �elds. It utilises 3-

dimensional convolutional kernels to model multiple frames of information simultaneously.

In contrast to optical �ow features where temporal information is explicitly modelled, this

approach implicitly models the information within the DCNN structure. The C3D network
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Figure 2.10: Two-stream network proposed by Simonyan and Zisserman [2014]. The
architecture and parameter setting of spatial and temporal network are the same.

is claimed to have two advantages over two-stream network: First, generic features can be

extracted from the network and applied to various tasks such as action classi�cation, sports

classi�cation, and scene recognition without restriction of the number of frames. Second,

it provides superior performance on action classi�cation in a compact form with low feature

dimensionality.

2.3.3 Summary

Recent work for action recognition has been dominated by the use of DCNNs, several methods

simply stack consecutive video frames into the 2D image-based DCNN to exploit the temporal

information. Such an approach assumes that the DCNN is able to learn the spatio-temporal

information and to assist with this they use pooling to act as a high-level summarisation layer

to capture the movement of the object based on appearances difference in consecutive frames.

However, this method does not give superior performance improvement as stacking the DCNN

is not able to take full advantage of temporal information by just stacking the images.

In order to better use the motion information, the two-stream network decomposes video

frames into spatial and temporal DCNNs by using raw RGB pixels and optical �ow frames.

Each stream is learned separately through two different DCNN component, the �nal classi-

�cation is performed by combing the softmax scores from two networks. The optical �ow

component can be treated as a mechanism to force the motion information into the learning

process. One of the major concerns is that it is very hard to optimise the number of horizontally

and vertically �ow �elds to be fed into the DCNN. Also, the two-stream method lacks a good
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explanation of why using the softmax to fuse the information from two networks.

The C3D method doesn't limit itself to fuse the spatial and temporal information at the last

decision layer. Instead, it embeds temporal information into the network by using �lter kernels

with size3x3x3 supporting maximum 16 consecutive frames. All �lters operate through space

and time simultaneously. However, this network can be visualised as a 2D spatial network

with a 1D temporal convolution, the temporal convolutional is performed at higher layers of the

network [Sun et al., 2015]. There is also a strong doubt that C3D can not be controlled to learn

both long term and short term temporal information as the number of channels for each layer is

a �xed number (L = 16).

2.4 Fine-grained Datasets

One of the reasons why �ne-grained classi�cation is a dif�cult problem is levels of annotations

(from the bounding box of the bird location in the image to the location of different parts) in the

dataset.

Fortunately, the rapid development of the computer vision data collection community pro-

vides several tools such as online crowd-sourcing technologies [Deng et al., 2009b, 2013] and

advanced methodologies [Van Horn et al., 2015a,b] to ease and accelerate the collection of

large-scale datasets. Datasets collected by those tools accelerate the progress in various object

recognition tasks [Deng et al., 2009b, Everingham et al., 2010, Soomro et al., 2012]. In 2012,

a large-scale image recognition contest was hosted by Stanford University. Despite the fact

that the winning method can be programmed and trained to recognize various categories of

objects in an image, the competition is made possible by a set of more than 14 million images

collected by the Machine Vision Group of Stanford University. For training and competition

purposes, a subset of the ImageNet containing only 1000 categories is used. Overall, there

are approximately 1.4 million images for training and testing and each category has roughly

1000 images. Such a huge dataset enables suf�cient training of computer vision models, which

consequently leads to greater accuracy of image recognition.

The whole ImageNet dataset structure is built based on WordNet hierarchy. However, we

should note that the existing 1,000 classes do not belong to the same parent node, implying that

subcategories are not considered. This makes it dif�cult to use as a �ne-grained dataset. Luckly,
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Figure 2.11: Parts annotation on CUB-200-11.

we have seen rapid growth from the �ne-grained community in releasing various �ne-grained

datasets such as bird datasets: CUB-200 [Wah et al., 2011b].

CUB-200-2012 [Wah et al., 2011b] contains 200 bird species from north America and each

species is organized by scienti�c classi�cation under order, family, genus, and species. 11,788

images which results in about 60 images for each class. Images are downloaded from Flickr

image search and annotated via Amazon Mechanical Turk. It is a challenging dataset because

large pose variations are presented in each category. Each image comes with an annotated

bounding box around the bird, as well as annotations for many constituent parts of the object.

Overall, 15 parts are annotated in each image including: back, beak, belly, breast, crown,

forehead, left/right eye, left/right leg, left/right wing, nape, tail, and throat. All parts and

bounding box are annotated by pixel location and visibility in each image.



Chapter 3

Inter-Session Variation Modelling

A challenge for �ne-grained classi�cation is to correctly identify a class despite large intra-

class variations due to pose and environmental variations. The �rst two publications of this

thesis explore the �rst research question “Can we model different instances of the same class

under various environments (large intra-class variations)?”.

In the �rst publication “Local Inter-Session Variability Modelling for Object Classi�cation”,

we introduce inter-session variability modelling (ISV) for �ne-grained classi�cation. ISV aims

to suppress session variation by explicitly modelling and removing intra-class variation using

a low-dimensional subspace. It has been applied successfully to both speaker and face veri-

�cation [McCool et al., 2013, Wallace et al., 2011]. We extend this GMM-based method by

modelling local session variations. This is achieved by dividing an image into local regions

and each region is modelled independently. Local region ISV allows us to re-enforce spatial

constraints that were previously being discarded. The proposed method demonstrates improved

performance over the ISV for �ne-grained classi�cation of �sh and face images.

In the second paper “Modelling Local Deep Convolutional Neural Network Features to

Improve Fine-grained Image Classi�cation”, we explore the potential of learning local fea-

tures, using deep convolutional neural networks (DCNNs) to extract features from uniformly

partitioned patches in the image. DCNN-based features have been shown to considerably

improve the object recognition performance in various computer vision tasks [Donahue et al.,

2014, Zeiler and Fergus, 2013]. However, DCNN features are high dimensional representations

(4096) compared to traditional features such as SIFT which has 128 dimensions [Lowe, 2004a],

making it dif�cult to use them as a local feature for stochastic models. Therefore, we propose

41
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to reduce the dimensionality of DCNN features through layer-restricted re-training. We show

that this novel DCNN-based local feature has superior performance over 2D-DCT features for

�ne-grained classi�cation of �sh and food.

To evaluate our proposed methods, we present a new challenging �ne-grained database of

�sh with 3,960 images collected from 468 species. This data consists of real-world images

of �sh captured in conditions de�ned as “controlled”, “out-of-the- water” and “in-situ”. More

details can be found in the �rst publication of this chapter.

“Local Inter-Session Variability Modelling for Object Classi�cation” has been published

at the Winter Conference on Applications of Computer Vision, 2014, and “Modelling Local

Deep Convolutional Neural Network Features to Improve Fine-grained Image Classi�cation”

was presented at the International Conference on Image Processing, 2015.
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Abstract

Object classi�cation is plagued by the issue of session
variation. Session variation describes any variation that
makes one instance of an object look different to another,
for instance due to pose or illumination variation. Recent
work in the challenging task of face veri�cation has shown
that session variability modelling provides a mechanism to
overcome some of these limitations. However, for computer
vision purposes, it has only been applied in the limited set-
ting of face veri�cation.

In this paper we propose a local region based inter-
session variability (ISV) modelling approach, and apply it
to challenging real-world data. We propose a region based
session variability modelling approach so that local ses-
sion variations can be modelled, termed Local ISV. We then
demonstrate the ef�cacy of this technique on a challenging
real-world �sh image database which includes images taken
underwater, providing signi�cant real-world session varia-
tions. This Local ISV approach provides a relative perfor-
mance improvement of, on average,23%on the challenging
MOBIO, Multi-PIE and SCface face databases. It also pro-
vides a relative performance improvement of35% on our
challenging �sh image dataset.

1. Introduction

Object classi�cation is a challenging problem due to
variations in the appearance of the objects and the envi-
ronment in which they appear. One of the best known and
most well investigated object classi�cation problems is that
of face recognition, where variations in subject pose and
lighting present signi�cant challenges [6]. A recent state-
of-the-art face recognition approach uses session variability
modelling [12] to provide a general model that describes the
differences that occur between instances of the same class,
whether that be from pose, illumination or expression varia-
tion. This session variability modelling approach is applied
in the context of a free-parts model [16], which discards po-

tentially useful spatial relationships.
The free-parts approach described in [16] divides the

face into blocks and each block is considered to be a in-
dependent observation of the same object (the face). The
distribution of these blocks is described by a Gaussian mix-
ture model (GMM) and has been investigated by several re-
searchers [16, 9, 10, 19]. Lucey and Chen [9] showed that
a relevance adaptation approach, similar to the one used
for speaker authentication [14], could be used to quickly
obtain client (class) speci�c GMMs by using a universal
background model (UBM). Furthermore, Lucey and Chen
showed that adding spatial constraints to this free-parts ap-
proach could yield state-of-the-art face recognition perfor-
mance on the BANCA dataset [13]. Sanderson et al. [15]
proposed a multi-region probabilistic histogram (MRH) ap-
proach which used the free-parts approach as its basis but
incorporates spatial constraints and also makes several sim-
pli�cations for ef�ciency purposes. This ef�cient method
provided state-of-the-art performance on the labeled faces
in the wild (LFW) dataset1.

Recently in [18, 12] the GMM free-parts (GMM-FP)
model was extended to include an inter-session variability
(ISV) modelling component. ISV learns a sub-space which
models the differences in instances of the same object (the
face). Such an approach was initially proposed to cope with
similar problems in speaker authentication [17]. This model
of session variability is used to estimate session variations
in order to suppress, or account, for them. Using this model
yielded state-of-the-art performance on several well known
face datasets such as MOBIO [11] and Multi-PIE [6]. De-
spite this state-of-the-art performance, this approach has an
obvious limitation as it does not enforce any spatial rela-
tionships between the blocks (observations), which discards
spatial information which would help to disambiguate be-
tween the classes. Furthermore, its general applicability to
vision problems has not been shown as it has only ever been
applied to face recognition.

Contributions: In this paper we propose a local inter-

1http://itee.uq.edu.au/ conrad/lfwcrop/



session variability modelling approach that enforces local
spatial relationships that were previously discarded. This
approach is similar to [15] which adopts a multi-region
probabilistic histogram approach. However, rather than
using a probabilistic histogram that uses the zeroth order
statistics of a GMM [15], we apply this to the GMM-FP
and ISV approaches which, as has been shown in [12], uses
the zeroth and �rst order statistics which provide a better ap-
proximation of the underlying data. We also apply, for the
�rst time, the ISV model to the broader problem of object
classi�cation to examine the general applicability of this
technique. To do this we use a large �sh image dataset that
contains challenging real-world images consisting of �sh
images captured in conditions ranging from controlled with
a constant background and illumination, through to under-
water imagery of �sh in their natural habitat with signi�cant
illumination and pose variations.

We show that introducing spatial constraints leads to
state-of-the-art performance for face and �sh image clas-
si�cation. Spatial constraints are introduced by dividing the
images intoR regions and learning a model speci�c to each
region. This allows us to locally model session variability
and capture local identity information. For face recognition
this Local ISV approach provides an average relative im-
provement of23%for the MOBIO [11], Multi-PIE [6] and
SCface [5] databases over the existing state-of-the-art. For
�sh classi�cation, we show that using Local ISV provides a
relative performance improvement of35%.

Finally, we examine the sensitivity of the Local ISV ap-
proach to real-world problems such as errors in face locali-
sation. Using the real-world MOBIO database, which con-
sists of face images captured from a mobile phone, we intro-
duce noise to the manually annotated landmarks to simulate
misalignment, a problem often encountered in practical ap-
plications [7]. Empirically we show that the Local ISV ap-
proach is more sensitive to this misalignment, but still pro-
vides superior performance when the noise in the position
of the landmarks is less than20%of the inter-eye distance.

The remainder of the paper is organized as follows. An
overview of existing work is presented in Section 2; the pro-
posed region based GMM and ISV based face authentica-
tion frame works are explained in Section 3. Databases and
protocols used in the experiments are presented in Section
4. In Section 5, we present the experimental results using
our novel �sh image database and three face databases. We
conclude the paper in Section 6.

2. Prior work

2.1. GMM FreeParts for Face Veri�cation

Several researchers have examined the use of the GMM-
FP framework to perform face veri�cation [16, 9, 19]. In-
troduced in [16], this approach divides the image (the face)

into N overlapping blocks which are considered to be in-
dependent observations of the same underling signal (the
face),O. From each block a 2D-DCT feature vector of di-
mensionM is obtained to compactly represent each block,
such that then-th block yields the feature vectoron . Thus
thej -th image of thei -th client yields the set ofn observa-
tions O i;j = [ oi;j; 1; : : : ; oi;j;n ]. The distribution of these
feature vectors is then modelled using a GMM,

P r (O j � ) =
NY

n =1

CX

c=1

! cN [on j � c; � c] ; (1)

whereC is the number of components for the GMM,! c is
the weight for componentc, � c is the mean for component
c, and� c is the covariance matrix (usually considered to be
diagonal) for componentc.

In order to overcome the limited number of samples per
client, i , mean-only relevance MAP adaptation [9] is used
to enroll the client (class). Originally proposed for speaker
authentication [14], mean-only relevance MAP adaptation
takes a prior model, usually referred to as a universal back-
ground model (UBM) GMM, and performs MAP adapta-
tion on the means using the observations of thei -th client,
O i , to obtain a model for the client. Since only the mean
vectors change, it has been shown [17] that this can be writ-
ten as,

si = m + Dz i ; (2)

wheresi is the mean super-vector for thei -th client,m is
the mean super-vector of the UBM GMM (the prior),z i

is a normally distributed latent variable, andD is a diag-
onal matrix that incorporates the relevance factor and the
covariance matrix [17] and ensures the result is equivalent
to mean-only relevance MAP adaptation.

To evaluate the likelihood that imaget, described by a
set of observationsO t , was produced by clienti a log-
likelihood ratio is used. In this case the positive class is
given by the claimed identityi and the negative class is rep-
resented by the UBM GMM. Thus, the log-likelihood ratio
is,

h (O t ; si ) = log [ p(O t j si )] � log [p(O t j m )] : (3)

It was shown in [19] that this could be ef�ciently calculated
using the linear scoring approximation [4] leading to,

hlinear (O t ; si ) = ( si � m )T � � 1f t jm ; (4)

where the diagonal matrix� is formed by concatenating
the diagonals of the UBM covariance matrices andf t jm is
the super-vector of mean normalised �rst order statistics as
given in [12]. A decision threshold,� , is applied to this
score to decide if the observations were generated by the
model,si . Image,O t , is classi�ed as being of clienti if
and only ifhlinear (O t ; si ) � � .



Super-vector notationis a way of compactly represent-
ing data for a GMM. It is particularly useful when we con-
sider mean-only relevance MAP adaptation as the only part
of the model that changes is the means. Since the weights,
[! 1; : : : ; ! C ], and variances,[� 1; : : : ; � C ], are �xed each
model can be described by the concatenation of their means
to form a single super-vectora = [ � T

1 ; : : : ; � T
C ]T . More

details for this notation can be found in [12].

2.2. Inter Session Variability Modelling

Inter-session variability modelling (ISV) has been ap-
plied successfully to speaker [17] and face veri�cation [12].
ISV aims to model and suppress session variation, that is
variation that makes one image of the same class look dif-
ferent to another image of the same class. For face recog-
nition this is often considered to be illumination, pose or
expression variation. At enrollment time session variation
is suppressed by jointly estimating a latent session variable
along with a latent identity variable, the latent session vari-
able is then discarded. When scoring, an estimate of the la-
tent session variable,x t , is obtained from the test samples,
O t . This estimate,x t , is then used to offset the models so
that the likelihood function now takes into account the ses-
sion variation (noise), of the test samples; see [12] Section
3.5 for more details.

Enrolling a client for ISV consists of MAP adaptation,
similar to mean-only relevance MAP adaptation. The dif-
ference is that a sub-space,U , is introduced to model ses-
sion variation and so restricts the movement for relevance
adaptation such that the model for thej -th image of thei -th
client (class) is,

u i;j = m + Ux i;j + Dz i ; (5)

wherex i;j is the latent session variable and is assumed to
be normally distributed. In this way each image is consid-
ered to have been produced with its own session variation;
for instance due to pose or illumination variation. As pre-
viously mentioned when performing enrollment the session
varying part (Ux i;j ) is discarded and only those parts per-
taining to identity are retained. Thus, the ISV client model
is given by,

sISV;i = m + Dz i : (6)

This should not be confused with mean-only relevance
MAP adaptation (see Equation 2) as the latent variablesx i;j

andz i are jointly estimated for ISV.
Scoring with ISV is performed by �rst estimating the la-

tent session variable,x t , for the test sampleO t . This is then
used to offset the client model (sISV;i ) and the UBM (m ) so
that the log-likelihood is estimated in the session conditions
of the test samples. This provides a mechanism to com-
pensated for session variation. When used in the context
of linear scoring, this leads to the following log-likelihood

ratio (LLR),

hISV (O t ; sISV;i ) = ( sISV;i � m )T � � 1

�
f t jm � N t Ux t jUBM

�
;

(7)

whereN t is the zeroth order statistics for the test sample in
a block diagonal matrix as de�ned in Equation 11 of [12].

3. Proposed approach

We propose to overcome one of the major limitations of
the ISV approach to image classi�cation by dividing an im-
age into local regions. Doing this allows us to re-enforce
spatial constraints that were previously being discarded. To
properly evaluate the local ISV approach we also have to
evaluate the local GMM-FP approach to ensure that locally
modelling session variability is not being boosted solely by
being able to extract local class speci�c information.

The approach is similar to work conducted in [15] where
a probabilistic histogram for local regions was formed us-
ing a GMM, termed a multi-region probabilistic histogram
(MRH). This MRH approach collates the zeroth order statis-
tics, the occupation probabilities, of a GMM to perform
classi�cation. By contrast, we propose to apply local re-
gion decomposition to the ISV approach due to their state-
of-the-art performance when used globally in [12]. These
techniques collate the zeroth and �rst order statistics of a
GMM to perform classi�cation, furthermore, ISV provides
an additional constraint to the MAP equations to suppress
session variations (noise).

3.1. Local GMM FreeParts Approach

We propose an extension to the GMM-FP approach
whereby the input images are divided into a set ofR re-
gions and each region is modelled independently. This ap-
proach, termed Local GMM-FP, allows us to derive local
descriptions of the identity variation. Similar to the GMM-
FP approach, the proposed Local GMM-FP technique di-
vides each region into a set of overlapping blocks from
which DCT features are extracted. A local GMM UBM is
then learnt for each speci�c regionM r , m r , and local mod-
els of the identity are then obtained using region speci�c
mean-only relevance MAP adaptation,

sr;i = m r + D r z r;i ; (8)

wheresr;i is thei -th client model corresponding to region
r , z r;i is a normally distributed latent variable for regionr ,
andD r is a diagonal matrix that incorporates the relevance
factor and the covariance matrix [17] as per Section 2.1.

Thet-th image is compared to thei -th client model in a
region speci�c manner. Thus the observations from ther -th
region oft-th image,O r;t , are compared to thei -th client's



model for ther -th region,sr;i . Thus the LLR becomes re-
gion speci�c,

hlinear (O r;t ; sr;i ) = ( sr;i � m r )T � � 1
r f r;t jm r

; (9)

where� r is the covariance matrix for ther -th region and
f r;t jm r is the mean normalised �rst order statistics for the
r -th region. Subsequently, all region speci�c scores are
summed and compared to the threshold,� .

3.2. Local InterSession Variability Modelling

In this section we propose to apply ISV to local regions
so that we can locally model session variability and cap-
ture local identity information. We apply a similar con-
cept to Section 3.1 of dividing the image intoR regions
and again perform MAP adaptation for each region inde-
pendently. Thus for thej -th image of thei -th client in the
r -th region we obtain the model,

u r;i;j = m r + U r x r;i;j + D r z r;i : (10)

A region speci�c ISV client model,sISV;r;i , is formed
by,

sISV;r;i = m r + D r z r;i : (11)

During the evaluation process, the region speci�c latent ses-
sion variablex r;i is estimated forO r;i using ther -th re-
gion from thei -th client model. Then, session variation is
compensated for by adding this estimated session offset to
sISV;r;i prior to scoring.

4. Database and Evaluation Protocols

4.1. Fish Image Set

To evaluate the new ISV approach in the broader ob-
ject classi�cation domain we introduce a new, large �sh
image dataset consisting of3; 960 images collected from
468species. This data consists of real-world images of �sh
captured in conditions de�ned as “controlled”, “out-of-the-
water” and “in-situ”. The “controlled” images consist of
�sh specimens, with their �ns spread, taken against a con-
stant background with controlled illumination, see Figure 2
(a) and (b). The “in-situ” images are underwater images of
�sh in their natural habitat and so there is no control over
background or illumination, in addition there is the chal-
lenge of the unique underwater imaging environment, see
Figure 2 (c) and (d). The “out-of-the-water” images con-
sist of �sh specimens, taken out of the water with a varying
background and limited control over the illumination con-
ditions, see Figure 2 (e) and (f).

There are two main dif�culties when performing classi-
�cation on the �sh imagery. The �rst is that, in many cases,
different species are visually similar, as shown Figure 1 (a)-
(d) where it can be seen that four species are visually sim-
ilar. The second is that there is a high degree of variability

in the image quality and environmental conditions, see Fig-
ure 2 for example images2 for some example images.

Approximately half of the images have been captured
in the “controlled” condition, where the image of the �sh
has been captured out-of-the-water with a controlled back-
ground. The “in-situ” condition consists of images taken
underwater with no control over the background and with
signi�cant pose and illumination variations. Approximately
one third of the data was captured in this manner. Finally,
the remaining images are captured “out-of-the-water”, but
without a controlled background and may contain some mi-
nor pose variation.

Evaluation Protocol: An evaluation protocol, similar
to [11] and [3], has been developed for experiments on this
dataset. We de�ne three sets of data by splitting the data,
based upon species (class), into a training set (train) to
learn/derive models; a development set (dev) to determine
the optimal parameters for our models; and an evaluation
set (eval) to measure the �nal system performance.

Two protocols are de�ned to evaluate the system per-
formance when high quality (“controlled”) and low quality
(“in-situ”) data is used to enrol classes. Protocol 1a uses one
enrollment image per species from the “controlled” data.
Protocol 1b uses one enrollment image per species from the
“in-situ” data. For both protocols, the same test imagery
(a mix of “controlled”, “in-situ” and “out-of-the-water” im-
ages) is used. Thetrain set consists of1; 296 images from
169species, and can be used to learn or derive models for
principal component analysis, probabilistic linear discrim-
inant analysis, or for learning the UBM GMM3. The dev
set consists of958 images from93 species, and theeval
set consists of963 images from98 species. For these two
protocols thedevandeval partitions consist of the sub-set
of species for which we have at least three images, with at
least one “controlled” and one “in-situ” image.

We evaluate system performance by measuring the
Rank-n identi�cation rate, using manually annotated
bounding boxes.

Rank-n refers to the percentage of queries for which the
correct result in within the topn matches. We measure per-
formance atn = 1 , n = 5 and n = 10. The bounding
boxes were obtained by inscribing a region around the body
of each �sh, an extra3% margin was added to avoid losing
edge information, example bounding boxes are shown in
Figure 2. The new �sh database which has been presented
will be made publicly available4.

2images (a) and (c) in the Figure 2 are from Australian National Fish
Collection CSIRO, (b) is taken by G. Edgar, and (d) is taken by Dennis
King

3to train ISV there we only use the155 classes that have more than one
image per species

4see http://tiny.cc/�shdataset for details



(a) Thalassoma Trilobatum (b) Thalassoma Quinquevittatum (c) Thalassoma Purporeum (d) Thalassoma Hardwicke

Figure 1: Example images of four different �sh species, all which have similar visual appearance despite being distinct
species. (Images taken by J.E. Randall)

(a) “controlled” (b) “controlled”

(c) “in-situ” (d) “in-situ”

(e) “out-of-the-water” (f) “out-of-the-water”

Figure 2: Example images of two different �sh species cap-
tured under the three different capture conditions (from top
to bottom): “controlled”, “in-situ” and “out-of-the-water”.
Signi�cant variation in appearance due to the changed
imaging conditions (session variation) is evident. Ground
truth bounding boxes are shown in red.

4.2. Face Databases

Three face databases are used to evaluate the proposed
approach: MOBIO [11], Multi-PIE [6], and SCface [5].
Face veri�cation is still a challenging classi�cation problem
and we want to compare the proposed approach to the cur-
rent state-of-the-art. The MOBIO and Multi-PIE databases
contain pose and illumination variations, while MOBIO and
SCface contain images captured with different sensors. SC-
face also contains variations in the resolution of the cap-
tured images.

When performing evaluations on each database we use
the well de�ned protocols that provide dedicatedtrain, dev
andeval sets. In each case approximately one third of the
data is used for each set. Thetrain, devandeval datasets
are used in the same manner as outlined in Section 4.1. For
all three databases we use manually annotated eye locations
and examples images are provided in Figures 3, 4 and 5 for

Figure 3: Example images from the MOBIO [11] database.

Figure 4: Example images from the Multi-PIE [6] database.

Figure 5: Example images from the SCface [5] database.

the MOBIO, Multi-PIE and SCface databases respectively.
More details on the protocols for the MOBIO and SCface
databases are given in [18], and for the Multi-PIE database
in [3].

System performance is presented in terms of equal er-
ror rate (EER) and half total error rate (HTER) [11]. EER
is used for the development set and is the point at which
the false alarm rate equals the false rejection rate (a smaller
number is better). The threshold,� , derived from the EER
on the development set is then used on the evaluation set
to obtain the HTER (the average of the false alarm rate
and false rejection rate) to present the �nal system perfor-
mance (a smaller number is better). Linear scoring and
ZT-Normalisation are used for all evaluated systems, as it
has previously been shown to be effective for face recogni-
tion [19].

4.3. Impact of Face Localisation Error

An issue for any real world face veri�cation system is
it's robustness to face mis-alignment; that is, the perfor-
mance degradation when the face image is not extracted per-



System Protocol 1a Protocol 1b
Dev Eval Dev Eval

PCA+PLDA 23.8 23.8 16.4 17.9
RBF-SVM (HoG) 31.8 31.4 24.2 25.5

GMM-FP 29.5 32.6 25.2 28.0
Local GMM-FP 37.4 43.0 34.6 40.2

ISV 34.9 37.8 30.9 33.5
Local ISV 43.1 49.3 40.8 46.7

Table 1: Fish Identi�cation Results. Rank-1 identi�cation
rate results are given, and the best performing system is
shown inbold.

fectly (based on the eye positions). Therefore, we evaluate
the robustness of our proposed approach to errors in mis-
alignment by introducing noise into the manually annotated
landmarks. We choose the MOBIO database for this eval-
uation, and add uniform random noise equal to2%, 5%,
10%and20%of the average inter-eye distance (119pixels
for the MOBIO database). The new landmark points which
have been used in this experiment are publicly available5.

5. Experiments

The proposed techniques have been implemented using
the the freely available signal processing and machine learn-
ing tool box, BOB [1].

5.1. Evaluation on Fish Image Set

The images are cropped with an extra margin of3%
added to the ground truth bounding boxes. Images are then
converted to gray-scale and resized to160� 64pixels. DCT
features are extracted exhaustively using a block size of
20 � 20 with M = 65. Mean and standard deviation is
applied to each block, as such the zeroth DCT coef�cient
is discarded. GMM based approaches use512components,
for the sub-space size is set to64 for Protocol 1a and32
for Protocol 1b. For the local approaches the optimal region
size was found to be4 � 4.

The �sh image dataset is a new dataset and so in addition
to the proposed approaches we also present several baseline
systems. The baseline systems used in this work are proba-
bilistic linear discriminant analysis (PLDA) which achieves
state-of-the-art performance for face recognition [8], and
a support vector machine (SVM) approach similar to that
used for classifying pedestrians [2]. For both the PLDA and
SVM approaches we used the gray-scale images which have
been resized to160� 64pixels. For PLDA we apply dimen-
sionality using principal component analysis (PCA) as this
showed improved performance, this is termed PCA+PLDA.

5visit https://wiki.qut.edu.au/display/saivt/Noisy+MOBIO+Landmarks
for details

Figure 6: Rank-1, Rank-5 and Rank-10 identi�cation rates
for Protocol 1a on the evaluation set.

For the SVM approach we use a histogram of oriented gra-
dients as the feature and a radial basis function as this pro-
vides superior performance over a linear SVM, referred to
as RBF-SVM.

Results presented in Table 1 show that the Local ISV ap-
proach outperforms all other approaches. The standard ISV
approach clearly outperforms the RBF-SVM and GMM-FP
approaches, and the Local ISV approach provides a rela-
tive performance gain of35%when compared to ISV. The
next best system is the Local GMM-FP approach which pro-
vides a relative performance gain of38%when compared to
GMM-FP. The Rank-5 and Rank-10 identi�cation results,
in Figures 6 and 7, show that Local ISV and Local GMM-
FP provide consistently improved performance.

A general trend for all of the classi�ers is that Protocol 1a
provides better performance than Protocol 1b. The average
relative performance difference for all classi�ers between
Protocol 1a and Protocol 1b is13%. This is likely due to
the fact that for Protocol 1a the enrollment data consists of
a “controlled” image, compared to Protocol 1b which uses
an “in-situ” image. This demonstrates the importance of
having high quality enrollment data with which to generate
a model, even when session variability modelling is used.

5.2. Evaluation on Face Veri�cation Databases

When extracting the DCT features we use a block size
of 12 � 12 with M = 44 for the MOBIO and Multi-PIE
databases. For the SCface database, we used a block size
of 20 � 20 with M = 65. These optimal block and feature
sizes were taken from [19].

We evaluated the proposed local face veri�cation ap-
proach on three databases as outlined in Section 4.2. Our
proposed technique is compared to three baseline tech-
niques: MRH, GMM-FP and ISV. In this experiment UBMs
are trained with512components for MOBIO and Multi-PIE
and256components for SCface. In the ISV and Local ISV
approaches a sub-space of40 components is used for MO-



Figure 7: Rank-1, Rank-5 and Rank-10 identi�cation rates
for Protocol 1b on the evaluation set.

BIO and SCface, and80components is used for Multi-PIE.
For the Local GMM-FP approach we use a region size of
4� 4 for MOBIO and Multi-PIE, and1� 2 for SCface. For
the Local ISV approach, we use region sizes of4 � 4 for
MOBIO, 2 � 2 for Multi-PIE and2 � 2 for SCface.

Table 2 shows the performance of the proposed ap-
proaches and the baselines. It was found that the Local
ISV approach performs best in all cases except for the SC-
face evaluation dataset, which obtains best performance us-
ing the ISV system. The Local ISV modelling technique
marginally improves the veri�cation performance in thedev
set and marginally decreases the performance in theeval.
This marginal performance degradation is likely due to the
large block size used (20 � 20) in conjunction with many
images in the SCface database being up-sampled to have
an inter-eye distance of33 pixels. The Local ISV system
provides an average relative performance improvement of
32% for the MOBIO and Multi-PIE databases. We also
note that the Local GMM-FP system consistently outper-
forms the GMM-FP system on all three databases, with an
average relative improvement of18%, further demonstrat-
ing the value of a region based approach. The Local ISV ap-
proach outperforms the Local GMM-FP system on all three
databases, and demonstrates the value in modelling session
variability and capturing identity information locally.

5.3. Evaluation of Face Veri�cation Performance in
the Presence of Localisation Error

The performance of face veri�cation in the presence of
localisation noise is evaluated as outlined in Section 4.3.
Figures 8 and 9 show the half total error rate (HTER) of the
Local GMM-FP and Local ISV face veri�cation systems
and their respective baselines (GMM-FP and ISV) in the
presence of increasing levels of face localisation noise on
the MOBIO database. The same systems con�gurations as
those in Section 5.2 are used. We evaluate performance at
�ve different noise levels: no noise; and with localisation
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Figure 8: Performance of the Local GMM-FP and GMM-
FP face veri�cation systems in the presence of face locali-
sation noise on MOBIO database evaluation set.
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Figure 9: Performance of the Local ISV and ISV face ver-
i�cation systems in the presence of face localisation noise
on MOBIO database evaluation set.

error of up to 2%, 5%, 10% and 20% of the average inter-
eye distance.

For both the proposed and baseline systems, system per-
formance degrades as noise increases. At levels of noise up
to 20% of the average inter-eye distance the proposed ap-
proaches outperform their baselines. However, as noise is
increased above10%, the proposed performance of all sys-
tems degrades considerably (see Figure 8).

This increased degradation is likely caused by the nature
of the region based systems. At high levels of noise and
with small region sizes, the locations of the regions relative
to the face changes signi�cantly. Thus the assumption that
corresponding regions between the client model and probe
image are modelling the same portion of the face is increas-
ingly likely to be violated as noise increases. However this
effect could be mitigated by using fewer regions (i.e.2 � 2
rather than4� 4), which would incur a small drop in perfor-
mance under ideal conditions, but offer greater invariance to
localisation errors.

6. Conclusions and Future Work

This works shows that state-of-the-art performance can
be obtained for �sh and face image classi�cation through
a region based, Local ISV modelling technique. This ap-



System MOBIO (female) MOBIO (male) SCface Multi-PIE
Dev Eval Dev Eval Dev Eval Dev Eval

MRH [12] 14.5 21.9 13.6 13.0 28.3 30.3 4.8 6.2
GMM-FP 11.5 22.2 7.5 9.9 16.7 16.3 3.1 3.8

Local GMM-FP 10.3 20.9 4.8 7.7 15.7 15.9 1.1 2.3
ISV 6.7 12.7 4.1 6.2 13.6 12.8 1.6 2.2

Local ISV 5.2 10.5 2.5 4.5 12.0 13.4 0.6 1.1

Table 2: Face Veri�cation Results. The MRH results are taken from [12]. Results for theDevdata are equal error rates, while
results for theEval data are half total error rates. The best performing systems are shown inbold.

proach allows noise (in the form of session variation) to be
modelled locally, while also capturing local identity infor-
mation. For the �rst time, we have applied the ISV model
to challenging natural world images of �sh to examine the
broad applicability of this technique to the more general ob-
ject classi�cation domain, and have shown that the Local
ISV approach outperforms the standard ISV by35%. In
the face veri�cation task, the Local ISV technique outper-
forms the standard ISV technique by an average of32%for
the MOBIO database and Multi-PIE unmatched illumina-
tion data set. We have shown that the Local GMM-FP sys-
tem also consistently outperforms the GMM-FP system on
all three face databases with an average relative improve-
ment of18%, further demonstrating the value of a region
based approach.

In addition to this, we have evaluated the real-world ap-
plicability of the Local ISV approach to face veri�cation in
the presence of face localisation error. It has been shown
that Local ISV outperforms baseline systems at noise lev-
els of up to20% of the average inter-eye distance. Future
work will consider the selection of weights for combining
the region based models, and will investigate approaches to
incorporate features such as colour into the models, which
may be of particular use for classi�cation of natural images.
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ABSTRACT
We propose a local modelling approach using deep convolu-
tional neural networks (CNNs) for �ne-grained image clas-
si�cation. Recently, deep CNNs trained from large datasets
have considerably improved the performance of object recog-
nition. However, to date there has been limited work using
these deep CNNs as local feature extractors. This partly stems
from CNNs having internal representations which are high di-
mensional, thereby making such representations dif�cult to
model using stochastic models. To overcome this issue, we
propose to reduce the dimensionality of one of the internal
fully connected layers, in conjunction with layer-restricted re-
training to avoid retraining the entire network. The distribu-
tion of low-dimensional features obtained from the modi�ed
layer is then modelled using a Gaussian mixture model. Com-
parative experiments show that considerable performance im-
provements can be achieved on the challenging Fish and UEC
FOOD-100 datasets.

Index Terms— �ne-grained classi�cation, deep convolu-
tional neural networks, session variation modelling, Gaussian
mixture models.

1. INTRODUCTION
Fine-grained image classi�cation refers to the task of recog-
nising the class or subcategory (for instance the particular �sh
species) under the same basic category such as bird or �sh
species [1, 17]. This is a challenging task for two reasons.
First, some classes (species) from the same category, such
as �sh, can appear to be very similar in terms of appearance
leading to low inter-class variation. Second, there is a high
degree of variability in the instances of the same classes due
to environmental and illumination variations leading to high
intra-class variation. Fig. 1 shows examples of both issues.

An approach to tackling these two issues is to extract lo-
cal region descriptors and to model them. Such an approach
has previously been popular for recognition of faces [11, 16]
and �sh [1]. These approaches typically divide the image into
patches (or blocks), with each patch considered to be an inde-
pendent (and partial) observation of the object. Each patch is
then represented by a feature vector and the distribution of all
of these features vectors, from an image, is then modelled us-
ing a Gaussian mixture model (GMM). The feature vector to
represent each patch has usually been obtained from a trans-
form such as the 2D discrete cosine transform [16].

Thalassoma Trilobatum Thalassoma Quinquevittatum

Thalassoma Purporeum Thalassoma Hardwicke

Fried Rice Chicken Rice

Ramen Beef Noodle

Fig. 1: First two rows show example images of four �sh species,
which have low inter-class variation: similar visual appearance de-
spite being distinct species. (Images taken by J.E. Randall). The
last two rows show images of four food dishes, with each dish type
having high intra-class variation.

Recently, feature learning through the use of deep con-
volutional neural networks (CNNs) has led to considerable
improvements for object recognition [10]. These deep CNN
feature representations are trained on large datasets such as
ImageNet [5] which has1; 000 general object categories. It
has been shown that these learnt features can be used to ob-
tain impressive results for other recognition tasks when used
as a global image representation [14]. However, to the best of
our knowledge no work has examined how to use these learnt
features as a local feature extractor for use with well known
statistical modelling approaches such as GMMs.

To use these deep CNN features as a local feature extrac-
tor two issues need to be addressed. First, deep CNNs such
as [10] generally have an internal representation which is high
dimensional, leading to the curse of dimensionality [3] for lo-
cal modelling techniques such as GMMs. Second, we need

4112978-1-4799-8339-1/15/$31.00 ©2015 IEEE ICIP 2015



to develop an ef�cient and effective method to retrain a deep
CNN containing millions of weights using a relatively small
set of images speci�c to a �ne-grained class. In this paper we
address both of these issues.

Inspired by recent work that has shown how to optimise
deep CNN features for small datasets using �ne-tuning [17],
we propose a method to obtain a low-dimensional deep CNN
representation that can be used as a local feature descriptor.
Speci�cally, we propose to explicitly reduce the dimensional-
ity of one of the internal fully connected layers, in conjunc-
tion with using layer-restricted retraining to avoid retraining
the entire network. We demonstrate empirically that the pro-
posed approach leads to considerable performance improve-
ments for two �ne-grained image classi�cation tasks: �sh
recognition [1] and food recognition [12].

We continue the paper as follows. In Section 2 we brie�y
describe the image classi�cation approach based on statisti-
cal modelling of local features and inter-session variability
modelling. The approach is used as a base upon which we
build on in Section 3, where we learn a low-dimensional deep
CNN representation that can be used as local feature descrip-
tor. Comparative experiments are given in Section 4, followed
by the main �ndings and future directions in Section 5.

2. MODELLING LOCAL IMAGE FEATURES

Modelling the distribution of local features has been explored
by several researchers [11, 16, 13]. In general, these methods
divide thej -th image of thei -th class,I i;j , into N overlap-
ping patches. Each patch is represented by anM -dimensional
feature vector, of low dimensionality, to yield the set ofN
feature vectorsO i;j = [ oi;j; 1; : : : ; oi;j;N ]. The distribution
of the vectors is then modelled using a GMM to obtain a prior
model, referred to as a universal background model (UBM),
that represents the basic category in question (eg. �sh, food).

This UBM representation forms the basis which many
feature modelling methods use. It can be used as a probabilis-
tic bag-of-words representation [15] or a model can be de-
rived for each class by performing mean-only relevance MAP
adaptation [11]. Another extension is to perform inter-session
variability (ISV) modelling [13] which learns those variations
that can make one instance (image) of the same class look dif-
ferent to another image of the same class.

Irrespective of the speci�c method they all rely on a GMM
which is known to perform poorly for high-dimensional
data [4]. This is partly due to the curse of dimensionality
where it becomes dif�cult to estimate a large number of pa-
rameters when there is limited data. To avoid this we will
show how to learn a low-dimensional deep CNN representa-
tion, however, before proceeding to this we �rst describe the
GMM feature modelling methods that we use in this work.

2.1. GMM Feature Modelling

We use two feature modelling approaches in this work, GMM
mean-only MAP adaptation and its extension ISV. These two

are chosen as they have been shown to provide consistently
good performance [13].

GMM mean-only MAP adaptation takes the prior model
(UBM) and adapts just the means using the enrollment data
of the i -th classO i ; all of the features for theJ i enrollment
images. Using supervector notation [13], this is written as

si = m + Dz i ; (1)

wheresi is the mean supervector for thei -th class,m is the
mean supervector of the UBM (the prior),z i is a normally
distributed latent variable, andD is a diagonal matrix that
incorporates the relevance factor and the covariance matrix
and ensures the result is equivalent to mean-only relevance
MAP adaptation.

ISV is an extension of the GMM mean-only MAP model
which learns a sub-space which models and suppresses ses-
sion variation [13]. It includes a subspaceU to cope with
session variation and is written in supervector notation as

u i;j = m + U x i;j + Dz i ; (2)

wherex i;j is the latent session variable and is assumed to
be normally distributed. Suppressing the session variation
is done by jointly estimating the latent variablesz i and
[x i; 1; : : : x i;J i ] followed by discarding the latent session vari-
ables to give

sISV;i = m + Dz i ; (3)
For both of these methods, the log-likelihood ratio is used

to determine if thet-th test imageI t was most likely produced
by classi . This is ef�ciently calculated using the linear scor-
ing approximation [7] which for GMM mean-only MAP is

hlinear (O t ; si ) = ( si � m )T � � 1f t jm ; (4)

and for ISV it is

hISV (O t ; si ) = (sISV;i - m )T � -1
�

f t jm - N t U x t jm

�
;

where the diagonal matrix� is formed by concatenating the
diagonals of the UBM covariance matrices,f t jm is the super-
vector of mean normalised �rst order statistics, andN t con-
tains the zeroth order statistics for the test sample in a block
diagonal matrix [13].

3. PROPOSED METHOD
To extract features from local patches, we aim to learn a
low-dimensional deep CNN representation which we refer
to as a low-dimensional CNN feature vector (LDCNN). This
is in contrast to the high dimensional representation (4096
dimensions) that is usually obtained from the fully connected
layer (fc-6) of the pretrained deep CNN [10], the structure of
this network can be seen in Fig. 2. Such high dimensional
representations are dif�cult to be effectively modeled with a
stochastic model such as a GMM, as such we aim to learn a
low-dimensional representation (LDCNN) whose dimension-
ality M is much less than4096. To reduce the dimensionality
while preventing the parameters from over�tting in the large
CNN architecture, we propose a two step modi�cation for the
network.
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Fig. 2: Modifying and retraining the deep CNN through a 2 step
procedure. For each step we have shaded in green the parts of the
network that are changed and retrained. First step: the highlighted
fc-8 layer is modi�ed to have only as many outputs as the number
of dataset speci�c classes. The layer is retrained, while all the other
parameters remain �xed. Second step: the highlighted fc-6 layer is
changed to map to onlyM outputs, followed by training the fc-6
layer in conjunction with the highlighted fc-7 layer, while keeping
the remaining parameters �xed. The output of the fc-6 layer is used
as a local feature extractor.

In the �rst step, using the pretrained network of [10] as a
starting point, we modify the �nal output layer (fc-8) to have
outputs for theNc training classes. The weights are randomly
initialised1 and retraining is then conducted such that only
the fc-8 layer is updated using a learning rate of0:01. This
process equates to a multiclass linear regression, using the
pretrained network as a feature extractor. It converges after a
few thousand iterations.

In the second step we replace the two fully connected lay-
ers fc-6 and fc-7 and retrain only these two layers with the
other layers �xed. We replace the original4096dimension fc-
6 layer with a newM -dimensional fc-6 layer that is randomly
initialised1, whereM � 4096. Features extracted from this
layer are referred to as LDCNN. The fc-7 layer is also re-
placed and randomly initialised1 as fc-6 and fc-7 are densely
connected. However, when we retrain the network, fc-7 re-
tains its original dimensionality of4096. Retraining is then
performed using back propagation and stochastic gradient de-
scent to update only these two layers. The learning rate is
initially set to0:01 but this rate reduces by a factor of10 for
every1000 iterations throughout training process. In this way,
all pretrained convolutional layer �lters from the original net-
work [10] are retained.

4. EXPERIMENTS

We evaluate our approach on two �ne-grained image datasets:
Fish [1] and UEC FOOD-100 [12]. For both datasets we
present two baseline systems, both of which perform classi-
�cation using an SVM and extract a single global CNN fea-

1 Random initialisation is performed by drawing fromN
�
0; 0:012

�
.

ture to represent each image. The �rst baseline extracts a sin-
gle global feature vector using fc-6 of the pre-trained deep
CNN [10] (4096dimensions); we refer to this asSVM-CNN.
The second baseline extracts a single global feature vector
using the re-trained low-dimensional CNN feature (LDCNN)
vector; we refer to this asSVM-LDCNN .

The local features modelling results (GMM), where the
image is divided intoN overlapping patches, use two feature
extractors. These feature extractors obtain anM -dimensional
feature vector from each of theN patches which is then mod-
elled using a GMM. The �rst,GMM-LDCNN , uses the pro-
posed low-dimensional CNN feature vector (LDCNN) to ob-
tain theM -dimensional feature vector. The second,GMM-
PCA-CNN, uses fc-6 pre-trained deep CNN [10] (4096 di-
mensions) and learns a transform using principal component
analysis (PCA) [6] to reduce the dimensionality toM .

When we perform local feature modelling (GMM) a range
of parameters are varied. The number of components evalu-
ated for the GMM wereC = [128; 256; 512; 1024], the size of
the ISV subspace wasNU = [2; 4; 8; : : : ; 256], and the range of
block sizesB = [32; 64; 96; 128]. For both datasets the images
were resized to be256 � 256. Caffe [8] was used to extract
and retrain the CNN features and Bob [2] was used to learn
the GMM and ISV models.

4.1. Fine-Grained Fish Classi�cation

We use the Fish image dataset from [1] which consists of
3; 960 images collected from468 species. This dataset con-
tains images captured in different conditions, de�ned as “con-
trolled”, “out-of-the-water” and “in-situ”. The “controlled”
images consist of �sh specimens with controlled background
and illumination. The “in-situ” images are underwater images
of �sh in their natural habitat and the “out-of-the-water” im-
ages consist of �sh specimens taken out of the water with a
varying background.

Following the de�ned protocols, the dataset is split into
three sets: a training set (train) to learn/derive UBM GMM
models; a development set (dev) to determine the optimal pa-
rameters and decision threshold for our models and an evalua-
tion set (eval) to measure the �nal system performance. There
are two protocols: protocol 1a evaluates the system perfor-
mance when high quality (“controlled”) data is used to en-
rol classes and protocol 1b evaluates the system performance
when low quality (“in-situ”) data is used to enrol classes. For
both protocols, the same test imagery (a mix of “controlled”,
“in-situ” and “out-of-the-water” images) is used. The local
modelling approach used for these experiments was the ISV
extension of the GMM approach as this provided a consid-
erable boost for the initial experiments; we refer to this as
GMM-LDCNN .

It has been shown in [1] that incorporating spatial infor-
mation can be advantageous, and as such we further propose
to extend the GMM-LDCNN approach by adding the spatial
location(x; y ) to each local feature vector prior to modelling;
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Chapter 4

Hierarchical Reasoning for Fine-Grained

Classi�cation

As discussed in chapter 3, the classes are often similar in terms of shape, colour and texture

because they belong to the same overarching category (eg.birds). In the previous chapter, the

proposed local ISV algorithm is able to distinguish similar looking sub-categories (�sh) by

modelling local parts. However, it assumes that all images are well aligned with minimal pose

and viewpoint variation. Furthermore, the capacity of the session variation modelling method

heavily relies on the number of Gaussians in each class model and it is scale-variant because of

the �xed size of the local patches being extracted from images. Unfortunately, such an approach

is dif�cult to translate to other �ne-grained problems when the objects' photos are taken in

natural environments with large pose and scale variations. One example is bird classi�cation

where bird images are taken with various poses such as �ying, walking and swimming. In

this chapter we explore the second research question “Can we learn robust and discriminative

features in order to classify �ne-grained classes which have small inter-class variations?” .

This chapter looks at two aspects. The �rst aspect is to divide the classes intoK subsets of

visually similar classes; an expert classi�er is then learnt for each subset. The second aspect uses

the same subset of visually similar classes and, instead of learning an expert classi�er, learns

discriminative features for each subset using DCNNs. The Both approaches can be applied on

top of any explicit parts modelling methods such as DPD [Zhang et al., 2013a]. This subset pre-

clustering method can be illustrated as a two layer hierarchical structure. Each subset serves as

a node and each speci�c class is a leaf.
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58 CHAPTER 4. HIERARCHICAL CLUSTERING FOR FINE-GRAINED CLASSIFICATION

Our proposed hierarchical structure operates in a fully automatic manner and can be used

for various �ne-grained classi�cation tasks. On the challenging CUB200-2011 bird dataset,

we show that considerable performance improvements can be achieved with our proposed

approach. The mean accuracy increases from 60.5% following the baseline global approach

of Donahue et al. [2014], to 71.4% for the hierarchical classi�er approach when ground truth

cluster labels are used. The fully-automatic system can achieve an accuracy of 68.6%. This

is a substantial performance improvement and highlights the potential bene�ts that are pos-

sible when an hierarchical approach is used. It is important to note that without using parts

information, we still achieved impressive results compared to those methods using a parts-

based model [Berg and Belhumeur, 2013, Chai et al., 2013b, Donahue et al., 2014]. The

hierarchical feature learning approach reaches 77.5% on CUB200-2011. We also applied to

the plant classi�cation problem on the PlantCLEF dataset. Our approach won second place in

the PlantCLEF 2015 competition.

These two approaches provide considerable improvements in performance but their accu-

racy is limited by the accuracy of assigning a class to its correct subset. In the next chapter we

extend this work by probabilistically assigning the responsibility of producing each sample.

“Fine-Grained Bird Species Recognition via Hierarchical Subset Learning” was presented

at the 2015 International Conference on Image Processing, “Subset Feature Learning for Fine-

Grained Category Classi�cation” was presented at 2015 Computer Vision and Pattern Recog-

nition Deep Vision Workshop and “Content Speci�c Feature Learning for Fine-Grained Plant

Classi�cation” was published as a working note at the 2015 International Conference and Labs

of Evaluation Forum.
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ABSTRACT

We propose a novel method to improve �ne-grained bird
species classi�cation based on hierarchical subset learning.
We �rst form a similarity tree where classes with strong vi-
sual correlations are grouped into subsets. An expert local
classi�er with strong discriminative power to distinguish vi-
sually similar classes is then learnt for each subset. On the
challenging Caltech200-2011 bird dataset we show that using
the hierarchical approach with features derived from a deep
convolutional neural network leads to the average accuracy
improving from64:5% to 72:7%, a relative improvement of
12:7%.

Index Terms— �ne-grained classi�cation, subset cluster-
ing

1. INTRODUCTION
Fine-grained image classi�cation is a challenging computer
vision problem. Distinct from general object classi�cation
which aims to �nd the correct overall category such as a bird
or dog, �ne-grained image classi�cation aims to identify the
particular sub-category of a given category [1, 13, 14]. As
an example, for an overall category ofbird we wish to dis-
criminate between various sub-categories with similar appear-
ance, as shown in Fig. 1. In fact, bird classi�cation is an
area of particular interest within �ne-grained image classi�-
cation [3, 5, 7, 8].

Recent work in bird classi�cation has concentrated on the
issues of pose and view-point variation by �nding local parts
or extracting normalised features. Several authors have exam-
ined ways in which locating the parts of the birds (and other
animals) can be used to improve classi�cation [4, 5, 14]. Ex-
tracting pose-normalised features has been another popular
approach [18] and is the basis for the deep convolutional bird
classi�cation system of Donahue et al. [6].

Aside from the issue of pose and view-point changes,
a major challenge for any �ne-grained classi�cation approach
is how to distinguish between classes that have high visual
correlations. In Fig. 1 it can be seen that thehooded oriole
andbaltimore oriolespecies are visually very similar, but can
be easily differentiated from theblack throatespecies. This
visual similarity was exploited by Berg and Belhumeur [2]
to build a similarity tree that divides visually similar classes

Black 
Throate

American 
Redstart

Orchad 
Oriole

Scott 
Oriole

Baltimore !
Oriole

Hooded !
Oriole

Fig. 1: One subset of the similarity tree of Berg and Bel-
humeur [2], built from the visual similarity matrix based on
part-based one-vs-one features [3]. Species from the same
node (eg. oriole) appear very similar to each other in terms of
overall color and texture.

into subsets, which in turn was used to help derive a vi-
sual �eld guide. However, the application of the similarity
tree to automatic classi�cation for bird images has not been
explored.

Inspired by the similarity tree of Berg and Belhumeur, we
propose a hierarchical approach for �ne-grained image classi-
�cation. Our hierarchical approach begins by clustering visu-
ally similar classes before learning separate expert local clas-
si�ers which focus on discriminating the similar classes.

As a baseline for bird classi�cation, we use the recently
proposed deep convolutional feature approach of Donahue et
al. [6]. This approach �rst performs part detection and pose
normalisation, followed by extracting local features. The part
detection and pose normalisation is achieved by using the de-
formable part descriptors model [18] on local parts which
have been extracted using a pre-trained deep convolutional
neural network (DCNN) learned from ImageNet [12]. Fea-
tures obtained from the 6-th layer (fc-6) of the DCNN are
used which are then classi�ed using a linear regression ap-
proach.

The paper is continued as follows. In Section 2 we present
our proposed hierarchical classi�cation system in detail. Sec-
tion 3 is devoted to a comparative evaluation with several re-
cent methods on the task of �ne-grained bird classi�cation.
Conclusions and possible future avenues of research are given
in Section 4.
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2. PROPOSED HIERARCHICAL CLASSIFICATION

Our proposed approach to hierarchical �ne-grained image
classi�cation consists of two steps. First, the system per-
forms a coarse classi�cation to assign the test sample to the
most likely subsetk using asubset selector. Each subset con-
sists of visually similar species; the subsets are automatically
generated using a similarity tree. Secondly, if the con�dence
of thesubset selectoris suf�ciently high, for each chosen sub-
set k, �ne-grained classi�cation is performed using a local
classi�er LocalSVMk . EachLocalSVMk has been trained to
differentiate between the visually similar species belonging to
this subset. If the con�dence is low, a one-vs-allGlobalSVM
classi�er is used. An overview of the system can be seen in
Fig. 2. The details of each component are explained in the
following subsections.

2.1. Automatically Obtaining the Similarity Tree

There are two main issues with using the similarity tree of
Berg and Belhumeur [2] to derive our hierarchical structure.
First, it has a deep hierarchical structure of up to17 layers
and in this work we wish to explore the potential for a shal-
low structure of just2 layers. Second, we want to generate
the hierarchical structure in a fully automatic manner. In con-
trast, the similarity tree in [2] is learned from features ob-
tained from manual part annotation which may not always be
possible or desirable.

Our aim is to derive a similarity tree that groups all of the
J i samples of classi to the same subset (cluster), as well as
grouping together similar classes. To do this we �rst obtain
discriminant features by applying linear discriminant analysis
(LDA) [15] to DCNN-based features (see Section 3 for more
details). We use discriminant features as they will aid in hav-
ing samples from the same class being assigned to the same
subset (cluster). Using these discriminant features we then
learn the similarity tree by performingk-means clustering.

An issue with this automatically derived similarity tree is
that not all of the samples from a class are assigned to just
one cluster (subset). To deal with this issue we use the re-
sult of k-means as an initial split of classes into subsets. We
then determine the subsetsk which contains the majority of
its samples for each classi and declare this as being the subset
responsible for that class. Using this assignment of classes to
subsets, we then learn a discriminativesubset selectorso that
we can more accurately assign a sample to its correct subset.

2.2. Subset Selectors

We train a discriminative subset selector to minimise the num-
ber of mis-assignments of species to its subset. Thek-th sub-
set is assignedI k classes, and so the subset selectorSelectork
is trained to correctly assign all the samples from theseI k

classes. The positive samples to train the subset selector con-

If High ConÞdenceIf Low ConÞdence

Fig. 2: An overview of the proposed hybrid system (the
green stars are test samples for class A). A test image is �rst
coarsely classi�ed into a subset, and receives a con�dence
on the classi�cation. If the con�dence is higher than a pre-
de�ned threshold, a local classi�erLocalSVMspeci�c to the
chosen subset is used to make the �nal decision. Otherwise,
a one-vs-all SVM (termedGlobalSVM) is used to make the
decision.

sist of all the training samples for theI k classes and the neg-
ative samples are the remaining training samples.

In total, K subset selectorsSelector1::K are trained, one
for each subset of the hierarchical structure. These subset se-
lectors are trained using a probabilistic SVM as this provides
the probability that a sample belongs to a particular subset.
This allows us to mitigate potential errors by incorporating
this knowledge in the next step.

2.3. Local Expert Classi�er Learning

Let S = f sk gK
k =1 denote theK subsets learned by the hi-

erarchical clustering. An expert classi�er (SVM) is then
learned for each subsetsk which we termLocalSVMk . Each
LocalSVMk is a linear multi-class SVM. This is different
to the classical one-versus-all approach because only the
I k classes assigned to the subset are used to train eachLo-
calSVM.
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2.4. Hybrid Decision System

The accuracy of the proposed system is dependent on the ac-
curacy of the assignment of a test sample to the correct subset
of our hierarchy. If the wrong subset is chosen then we have
no way to recover and a mis-classi�cation will occur. To al-
leviate this issue, we present a hybrid decision system which
makes use of the classical global classi�er,GlobalSVM, as
well as our local classi�er,LocalSVM.

Our hybrid decision system makes use of the probabil-
ity from the subset selector to combineGlobalSVMand the
LocalSVM. It uses the locally trained classi�er (LocalSVMk )
only when the con�dence of the subset selector is greater than
a pre-de�ned threshold� . In all other cases the classicalGlob-
alSVMtrained with all birds species is used to make the clas-
si�cation decision.

3. EXPERIMENTS

We evaluate our approach on the Caltech birds dataset
(CUB200-2011) [17]. It contains 11,788 images from 200
bird species in North America. Each species has approxi-
mately 30 images for training and 30 for testing. Each image
comes with an annotated bounding box around the object of
interest (the bird), as well as annotations for many constituent
parts of the object.

The feature vectors that we use throughout our experi-
ments are the DCNN features (DeCAF) trained from Ima-
geNet [12]. We �ne-tune these features, using Caffe [10],
for the task of bird classi�cation by replacing the �nal out-
put layer (for the1; 000classes of ImageNet) with a 200 class
layer for bird species. We then retrain the entire network us-
ing the training samples for the 200 bird classes with a learn-
ing rate of0:011.

The experiments are divided into two parts:(i) perfor-
mance of the proposed hierarchical approach for varying
number of subsets, and(ii) performance comparison of the
proposed system against several recent algorithms. Based on
preliminary experiments, the threshold for con�dence of the
subset selector is set to� = 0 :98 for all experiments.

We �rst evaluate the performance of the proposed system
by varying the number of subsetsK = [2 ; 3; : : : ; 25]. The
results are presented in Fig. 3, along with the performance of
the baseline system DPD-DeCAF [6]. The performance of
the proposed system generally increases untilK = 8 , reach-
ing 72:7%. For higher values ofK (ie. more subsets), the
performance tends to decrease in a non-monotonic manner,
indicating that relatively large values ofK are not necessarily
helpful. A visualisation of the classes assigned to each subset
is given in Fig. 4.

Comparisons against other methods are shown in Tables 1
and 2. In Table 1 parts annotations are exploited, while in Ta-

1This rate decreases by a factor of10 every5; 000 iterations for a total of
20; 000 iterations.
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Fig. 3: Performance of the proposed method on the Caltech-
UCSD CUB200-2011 bird dataset, while exploting part an-
notations. The number of subsets (K ) is varied from 2 to 25.
The subsets are selected automatically. Performance of the
baseline system DPD-DeCAF [6] is also shown.

Table 1: Accuracy of various systems on the Caltech-UCSD
CUB200-2011 bird dataset, exploiting part annotations.

Method Accuracy
Pooling feature learning [11] 38.9%
Symbiotic Model [5] 59.4%
POOF [3] 56.9%
Part transfer [9] 57.8%
DPD-DeCAF [6] 64.5%
Proposed method(automatic subsets,K =8) 72.7%
Proposed method (ground truth subsets,K =8) 78.6%

Table 2: As per Table 1, but instead of using part annotations,
only bounding box information is used.

Method Accuracy
Bounding Box [16] 53.3%
Bounding Box-aug [16] 61.8%
Proposed method(automatic subsets,K =14) 68.6%

ble 2 only bounding boxes are used. It can be seen that in Ta-
ble 1 the proposed method (using the optimalK = 8 ) leads to
a relative performance improvement of12:7% over the base-
line DPD-DeCAF system. When ground-truth labels are used
for the subset selector, the proposed system can increase its
performance from72:7% to 78:6%: This indicates that if the
performance of the subset selector can be improved, we can
further improve the performance of the overall system.

In Table 2, where only bounding boxes are used in-
stead of parts annotations, the best performance by the pro-
posed method is obtained atK = 14. The proposed method
achieves an accuracy of69:2% compared to61:8% obtained
by a convolutional neural network method presented in [16],
resulting in a relative performance improvement of12:0%.
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Subset 1

Subset 2

Subset 3

Subset 4

Subset 5

Subset 6

Subset 7

Subset 8

Fig. 4: Example images of 10 classes for each of the subsets for the best performing system (K = 8 ). It can be seen that the
classes assigned to each subset are visually similar.

4. CONCLUSION

In this paper, we have introduced a novel direction to tackle
the problem of �ne-grained classi�cation. We have proposed
the use of a hierarchical classi�er so that classes that have
high visual correlations are grouped together into the same
subsets. An expert classi�er is then learnt for each subset.

The novel hybrid hierarchical classi�cation system yields
performance improvements over the recent deep convolu-
tional neural network system proposed in [6]. This hybrid
approach combines the classicalGlobalSVM classi�cation
approach with a novelLocalSVM classi�cation approach.
Evaluations on the challenging CUB200-2011 dataset [17]
show that classi�cation accuracy for a fully automatic system
can be increased from64:5% to 72:7%, a relative improve-
ment of12:7%.

Future work will examine ways to close the gap between
the performance of the automatic system and the performance
of the ground truth system. The ground truth (assigning all

test samples to their correct subset) achieves a classi�ca-
tion accuracy of78:6%, which is considerably better than
the 72:7% of the fully automatic system. This implies that
performing more accurate assignment of a sample to its sub-
set can yield considerable performance improvements. One
possible approach to obtain more accurate assignment would
be to learn visual features that best differentiate the subsets
rather than all of the classes.
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Abstract

Fine-grained categorisation has been a challenging
problem due to small inter-class variation, large intra-class
variation and low number of training images. We pro-
pose a learning system which �rst clusters visually similar
classes and then learns deep convolutional neural network
features speci�c to each subset. Experiments on the popu-
lar �ne-grained Caltech-UCSD bird dataset show that the
proposed method outperforms recent �ne-grained categori-
sation methods under the most dif�cult setting: no bounding
boxes are presented at test time. It achieves a mean accu-
racy of77:5%, compared to the previous best performance
of 73:2%. We also show that progressive transfer learning
allows us to �rst learn domain-generic features (for bird
classi�cation) which can then be adapted to speci�c set of
bird classes, yielding improvements in accuracy.

1. Introduction

Deep convolutional neural networks (CNNs) have been
successful in various computer vision tasks. Deep CNNs
have achieved impressive in both general [18, 22, 9] and
�ne-grained image classi�cation [26, 13]. Recently, deep
CNN approaches have been shown to surpass human per-
formance for the task of recognising 1000 classes from the
ImageNet dataset [16]. Although deep CNNs can serve as
an end-to-end classi�er, they have been used by many re-
searchers as a feature extractor for various recognition prob-
lem including segmentation [15] and detection [14].

Recently, the task of �ne-grained image categorisation
has received considerable attention, in particular the task
of �ne-grained bird classi�cation [26, 3, 7, 10, 12]. Fine-
grained image classi�cation is a challenging computer vi-
sion problem due to subtle differences in the overall appear-
ance between various classes (low inter-class variation) and
large pose and appearance variations in the same class (large
intra-class variation).

Much of the work for �ne-grained image classi�ca-
tion has dealt with the issue of detecting and modelling
local parts. Several researchers have examined methods
to �nd local parts and extract normalised features in or-

der to overcome the issues of pose and view-point varia-
tion [5, 7, 20, 27, 9]. Aside from the issue of pose and view-
point changes, a major challenge for any �ne-grained classi-
�cation approach is how to distinguish between classes that
have high visual correlations [3]. Some state-of-the-art pose
normalised methods still have considerable dif�culty in cat-
egorising some visually similar �ne-grained classes [26, 6].

To date, there has been limited work which investigates
in detail how best to learn deep CNN features for the �ne-
grained classi�cation problem. Most of the methods used
off-the-shelf convolutional neural networks (CNNs) fea-
tures trained from ImageNet or �ne-tuned the pre-trained
ImageNet model on the target dataset, then using one fully-
connected layer as a feature descriptor [17, 22].

This paper examines in detail how to best learn deep
CNN features for �ne-grained image classi�cation. In do-
ing so, we propose a novelsubsetlearning system which
�rst splits the classes into visually similar subsets and then
learns domain-speci�c features for each subset. We also
comprehensively investigate progressive transfer learning
and highlight that �rst learning domain-generic features (for
bird classi�cation) using a large dataset and then adapting
this to the speci�c task (target bird dataset) yields consider-
able performance improvements.

2. Related Work

2.1. Convolutional Neural Networks

Krizhevsky et al. [18] recently achieved impressive per-
formance on the ImageNet recognition task using CNNs,
which were initially proposed by LeCun et al. [19] for hand
writing digit recognition. Since then CNNs have received
considerable attention [22, 14]. The network structure of
Krizhevsky et al. [18] remains a popular structure and con-
sists of �ve convolutional layers (conv1 to conv5) with two
fully-connected layers (fc 6 and fc 7) followed by a soft-
max layer to predict the class label. The network is capa-
ble of generating useful feature representations by learning
low level features in early convolutional layers and accu-
mulating them to high level semantic features in the latter
convolutional layers [25].

46978-1-4673-6759-2/15/$31.00 ©2015 IEEE



Figure 1. Birdsnap is a very challenging �ne-grained bird dataset
with sexual as well as age dimorphisms. There are considerable
appearance differences between males and females, as well as be-
tween young and mature birds. Each row shows images from the
same species. For each bird species there are large intra-class vari-
ations: pose variation, background variation and appearance vari-
ation.

2.2. Features for Finegrained Classi�cation

Several approaches have been designed to learn feature
representations for �ne-grained image classi�cation. Berg
et al. [3] generated millions of keypoint pairs to learn a set
of highly discriminative features. Zhang et al. [27] learned
pose normalised features by using the deformable part de-
scriptors model (DPM) [11] on local parts which were ex-
tracted using a pre-trained deep CNN. Chen et al. [8] pro-
posed a framework to select the most con�dent local de-
scriptors for nonlinear function learning using a linear ap-
proximation in an embedded higher dimensional space.

The above feature learning schemes are implicitly part-
based methods. This means they require the ground truth
locations of each part which limits their usefulness in terms
of fully automatic deployment.

3. Proposed Method

Our proposed feature learning method consists of two
main parts. First, we perform progressive transfer learn-
ing to learn a domain-generic convolutional feature extrac-

tor (termed� GCNN ) from a large-scale dataset of the same
domain as the target dataset. Second, we perform subset-
speci�c feature learning from pre-clustered subsets which
contain visually similar �ne-grained class images. The dis-
criminative convolutional features learned from the subset
learning system is termedDF CNN , and the related fea-
ture extractor is referred as� DF CNN .

For image I i , we apply the � GCNN (I i ) and
� DF CNN (I i ) and combine them to obtain our feature vec-
tor to describe the image. For training the classi�er, we
employ a one-versus-all linear SVM using the �nal feature
representation.

3.1. Progressive Transfer Learning

It is desirable to have as much as data possible in order
to avoid over�tting while training a CNN. A typical CNN
has millions of parameters which makes it dif�cult to train
when data is limited. Typically �ne-grained image datasets
are relatively small compared to the ImageNet dataset. To
circumvent problems with small datasets, a process known
as transfer learning [24] can be applied. Transfer learning
has usually been applied by �ne-tuning a general network,
such as the network of Krizhevsky et al. [18], to a speci�c
task such as bird classi�cation [26]. Recent work by Yosin-
ski et al. [24] found that better accuracy can be achieved
if transfer learning is performed using datasets representing
the same or related domains.

Inspired by the �ndings of Yosinski et al. [24], we pro-
pose an alternative approach where a generic CNN is pro-
gressively adapted to the task at hand. First, a large dataset,
which is related to the same domain as the �nal task, is used
to perform transfer learning. This yields a domain-generic
feature representation. Second, a smaller dataset which rep-
resents the �nal task at hand is used to adapt the domain-
generic features to yield task-speci�c features. Our experi-
mental results show that progressive transfer learning yields
feature representation which lead to consistently improved
performance. Furthermore, we will show that the domain-
generic features can also be used effectively for the task at
hand.

3.2. Subset Speci�c Feature Learning

Recent parts-based �ne-grained methods show relatively
good performance on the Caltech-UCSD bird dataset [23].
The methods are good at recognising birds species with dis-
tinguishable features with moderate pose variation. How-
ever, many mis-classi�cations occur for birds species that
have similar visual appearance.

To address this issue, we propose to pre-cluster visually
similar species into subsets and use subset-speci�c CNNs.
Instead of relying on one CNN to handle all possible cases,
each CNN focuses on the differences within each subset.
In effect, the overall classi�er has more parameters, as all
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DFCNN 1

DFCNN K

DFCNN 2

Figure 2. Pre-clustered visually similar images are fed into
DF CNN 1:::K with backpropogation training to learn discrimi-
native features for each subset.

CNNs have the same network architecture. Due to the prac-
tical issues such as training time and memory requirements,
using separate CNNs dedicated to speci�c tasks is more
practical than having one very large CNN. An overview of
this subset learning scheme is shown in Fig.2.

The above subset feature learning process is initially per-
formed on a large yet related dataset. In particular, we use
the large Birdsnap dataset [4] instead of the target Caltech-
UCSD dataset [23]. We expect that our learned features
are both generalised and discriminative compared to fea-
tures learned directly on the same size or smaller size target
dataset under the same domain.

3.2.1 Pre-clustering

To generate subsets in terms of visually similar images,
image representations should focus on colour and texture
while being robust to pose and background variations. We
investigate three types of features as image representers.
Features are obtained from either the 5-th layerconv5 or
the 6-th layer (fc 6) of the CNN. These were selected due
to their recent use by other researchers to perform object
recognition and clustering [9]. We also apply linear dis-
criminant analysis (LDA) [21] to fc 6 features to reduce
their dimensionality. This is done to ameliorate the well
known issues of clustering high dimensional data [1]. The
subsets are then obtained viak-means clustering.

Examples of clustering results using the three feature
types are shown in Fig.3. The fully connected layer based
featurefc 6 �ts our criteria better than clustering using the
the convolutional featureconv5 that tends to learn shape
and pose information, which is undesirable. This particular
property can be seen in clusters 1 and 2 in Fig.3(a) which

(a)

(b)

(c)

Figure 3. Pre-clustering results using:(a) conv5 layer features,
(b) fc 6 layer features,(c) lda� fc 6 features. Clustering viaconv5
yields undesirable strong correlations with pose and shape infor-
mation. Usingfc 6 yields some improvements, but the pose bias is
still visibly present. Usinglda � fc 6 provides further clustering
improvements in terms of robustness to color and pose variations.

represent right and left pose of birds images while the rest
are grouped into cluster 3. We conjecture that this is due to
the convolutional based features containing a high degree of
spatial information. Usingfc 6 yields some improvements,
but the pose bias is still visibly present. Usinglda � fc 6
features provides further clustering improvements in terms
of robustness to colour and pose variations.

3.2.2 Subset Feature Learning

A separate CNN is learned for each of theK pre-clustered
subsets. The aim is to learn features for each subset that
will allow us to more easily differentiate visually similar
species. As such, for each subset, we apply transfer learn-
ing to the CNN of Krizhevsky et al. [18] (whose struc-
ture was described in Section2). To train thek-th subset
(Subsetk ) we use theNk images assigned to this subset
X k = [ x 1; : : : ; x N k ], with their corresponding class la-
bels C k = [ c1; : : : ; cN k ]. The number of outputs in the
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associated last fully connected layerfc 8 is set to the num-
ber of classes in each subset. Transfer learning is then ap-
plied separately to each network using backpropogation and
stochastic gradient descent (SGD). We then takefc 6 to be
the learned subset feature� DF CNN k for thek-th subset.

3.3. Finegrained Classi�cation

To predict test labels for an imageI t , our classi�cation
pipeline combines the� GCNN (I t ) feature with theK sub-
set features� DF CNN 1:::K (I t ). A max voting rule is used
to retain only the most relevant subset-speci�c feature. The
otherK � 1 features are set to0. See Fig.4 for a conceptual
representation. To balance weights for the domain-generic
and subset-speci�c features, bothGCNN andDF CNN
features are thenl2 normalised before combining them into
a single feature vector. Using this feature vector, we train a
one-versus-all linear SVM in order to make predictions.

3.3.1 Max Voting DFCNN

The �nal feature representation for imageI is the concate-
nation of generalised features obtained from� GCNN (I )
and theK subsets� DF CNN 1:::K (I ). However, sometimes
an image is more relevant to one subset features than others.
For example to extract features for a White Gull image, it is
more reasonable to useDF CNN features from the subset
which has many relevant white birds.

To emphasise the most relevantDF CNN , we �rst
learn asubset selectorto select the most relevant sub-
set (rank 1) to the image. Max voting is then used to
retain the feature from the most relevant subset and the
remainingk � 1 subset features are set to0. One way
to interpret the max voting is to use thesubset selector
to learn a binary vectorw , where

P K
i =1 w i = 1 . The

�nal subset feature representation is thenDF CNN =
[w1� DF CNN 1 (x i ); : : : ; wk � DF CNN K (x i )]. We explore
two ways to learn thesubset selector.

The simplest way of learning thesubset selectoris to
use the centroids from the pre-clustering; we refer to this
as Cen1:::K . This provides a simple classi�er trained in
an unsupervised manner, however, given the importance of
this stage we explore the use of a discriminatively trained
classi�er using a CNN.

Another way to select the most relevant subset is to train
a separate CNN based subset selectorSCNN . Using the
output from the pre-clustering as the class labels, we learn
a new SCNN by changing the softmax layerfc 8 to have
K outputs. The softmax layer now predicts the probability
of the test image belonging to a speci�c subsetSubsetk ,
max voting is then applied to this prediction to choose the
most likely subset. As with the previously trained CNNs,
the weights ofSCNN are trained via backpropogation and
SGD using the network of Krizhevsky et al. [18] as the start-
ing point.

DFCNN 1 DFCNN 2 DFCNN K

fc-6 fc-6 fc-6

GCNN 

fc-6Max Vote with W

Figure 4. Feature representation of the test image is the con-
catenated features from both DFCNN with weighting factors and
GCNN.

4. Experiments

In this section we present a comparative performance
evaluation of our proposed method. We conduct experi-
ments on the Caltech-UCSD dataset [23], which is the most
widely used benchmark for �ne-grained classi�cation. We
train the model using ImageNet [18] and recently released
Birdsnap dataset [4].

ImageNet consists of 1000 classes with approximately
1000 images for each class. In total there are approximately
1.2 million training images.

Caltech-UCSD contains 11,788 images across 200
species. Birdsnap contains 500 species of North American
birds with 49,829 images. Examples are shown in Fig.1.
Birdsnap is similar in structure to Caltech-UCSD, but has
several differences. First, it contains overlapping 134
species and four times the number of images than Caltech-
UCSD. Second, there is strong intra-variation within many
species due to sexual as well as age dimorphisms. There
are considerable appearance differences between males and
females, as well as between young and mature birds.

We use the implementation of LDA andk-means from
the Bob library [2]. The open-source package Caffe [17]
is used to train and extract CNN features. We uselda �
fc 6 layer features to pre-cluster subsets andfc 6 features
for classi�cation.

4.1. Evaluation of Transfer Learning for Domain
Generic Features

The CNN model architecture is identical to the model
used by Krizhevsky et al. [18]. We �ne-tune the CNN model
by using training images from the ground truth bounding
box crops of the original images. The resultant cropped im-
ages are all resized227� 227. During test time, ground truth
bounding box crops of the test images from Caltech-UCSD
are used to make predictions.
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We conducted 3 sets of experiments for transfer learning:

1. The �rst experiment used all of the data from Bird-
snap (500 species) to perform large-scale progressive
feature learning.

2. In the second experiment we removed those species
in Birdsnap and Caltech-UCSD that overlapped. This
allows us to examine the potential for learning domain
features that are not speci�c to the task at hand.

3. In the third experiment we explored the impact that
including the overlapping species has on the transfer
learning process.

We use the following acronyms.IN represents using
weights from the pre-trained ImageNet model. We de-
�ne rt as retraining the network from scratch with random
initialised weights. ft refers to �ne-tuning the network.
For example,IN-CUB-ft means �ne-tuning the ImageNet
model weights on the Caltech-UCSD bird dataset. Ima-
geNet dataset is represented asIN, while Caltech-UCSD is
CUB, and Birdsnap isBS.

4.1.1 Transfer Learning: Experiment I

In this experiment we used all images (500 species) from
Birdsnap to explore large-scale progressive feature learning.
We exclude those images that exist in both Birdsnap and the
Caltech-UCSD datasets.

The �rst three rows of Table1 show the accuracy when
the CNNs are trained from scratch. In this setting theIN-rt
system, the pre-trained network generated by Krizhevsky et
al. [18] on ImageNet, performs the best with a mean accu-
racy of 58:0%. Interestingly, theBS-rt system has a con-
siderably higher mean accuracy of44:8% when compared
to CUB-rt which has a mean accuracy of11:4%. We be-
lieve that this indicates that the Birdsnap dataset has almost
enough data to train a deep CNN from scratch.

Transfer learning offers a way to mitigate the lack of suf-
�cient domain data. As such, we performed transfer learn-
ing by �ne-tuning the pre-trained CNN. We did this using
just the Caltech-UCSD (target) datasetIN-CUB-ft or the
Birdsnap (domain speci�c) datasetIN-BS-ft .

Somewhat surprisingly, training on the target dataset
(IN-CUB-ft ) provides a lower mean accuracy of68:3%
when compared to using the domain speci�c dataset (IN-
BS-ft) which has a mean accuracy of70:1%. Performing
progressive feature learning on theIN-BS-ft CNN leads to
further improvements achieving a mean accuracy of70:8%
(IN-BS-ft-CUB-ft ). These two results demonstrate the po-
tential for learning domain-generic features (IN-BS-ft ) as
well as progressive feature learning to perform effective
transfer learning (IN-BS-ft-CUB-ft ) for �ne-grained image
classi�cation.

Table 1. Mean accuracy of transfer learning on the Caltech-
UCSD bird dataset (bounding box annotation provided). Steps
represents the number of training stages.

Method Steps Mean Accuracy

All species (500)
IN-rt 1 58.0%
CUB-rt 1 11.4%
BS-rt 1 44.8%

IN-CUB-ft 2 68.3%
IN-BS-ft 2 70.1%
IN-BS-ft-CUB-ft 3 70.8%

Non-overlapping species (366)
IN-BS-ft 2 67.7%
IN-BS-ft-CUB-ft 3 70.5%

Overlap (134) + Random (232)
IN-BS-ft 2 69.5%

An obvious issue that is not addressed in this �rst exper-
iment is that there are overlapping species in Birdsnap and
Caltech-UCSD. To evaluate the impact of this we perform
two more experiments.

4.1.2 Transfer Learning: Experiment II

Next we investigate transfer learning features from non-
overlapping classes between two bird datasets. We �ne-tune
the pre-trained CNN using those species from the Birdsnap
dataset that do not overlap with Caltech-UCSD. There are
134species that overlap and so we only use366species for
this experiment.

As can be seen from the second part of the Table.1,
the result of transfer learning on Birdsnap in this setting is
slightly worse with a mean accuracy of67:7%. However, if
we perform progressive feature learning by learning on the
target dataset (IN-BS-ft-CUB-ft ) we obtain a mean accu-
racy of70:5%. This is only0:3% worse than if we used all
of the Birdsnap data and demonstrates the effectiveness of
progressive feature learning.

4.1.3 Transfer Learning: Experiment III

In this experiment we show the importance of overlapping
classes for learning domain-generic features. In order to
investigate if the overlapping classes play a key role to
learn domain-generic features, we �ne-tuned the ImageNet
model again with134 overlapping species and232 ran-
domly selected unique species from the Birdsnap; this gives
us366species which is the number of species available in
Experiment II. The result shows that overlapping species
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are important to learn domain-generic species with a mean
accuracy of69:5%.

4.2. Evaluation of Subset Speci�c Features

In this set of experiments we evaluate our proposed sub-
set feature learning method on Caltech-UCSD. We use the
same evaluation protocol as domain-generic feature learn-
ing in the previous section, where theDF CNN is used to
extract features from given ground truth bounding box loca-
tion of the whole bird. We use the acronymSF to indicate
subset feature learning. Based on initial experiments we set
K = 6 .

Results in Table2 show that subset feature learning pro-
vides considerable improvements. As a baseline, the results
from [26] are shown, where the features were �ne-tuned
on the Caltech-UCSD dataset; this equates toIN-CUB-
ft in our terminology. Comparing to this baseline, both
of our proposed subset feature learning methods,IN-BS-
ft-SF(SCNN) andIN-BS-ft-SF(k-means), provide consid-
erable improvements with mean accuracies of72:0% and
70:4% respectively. This demonstrates the effectiveness of
our proposed subset feature learning technique, and the im-
portance of the subset selector as the SCNN approach pro-
vides an absolute performance improvement of1:6% when
compared to the much simplerk-means approach.

4.3. Comparison with StateoftheArt

In this section we demonstrate that subset feature learn-
ing can achieve state-of-the-art performance for automatic
�ne-grained bird classi�cation. Recent work in [26] pro-
vided state-of-the-art performance on the Caltech-UCSD
dataset. This was achieved by crafting a highly accu-
rate parts localisation model which leveraged deep convo-
lutional features computed on bottom-up region proposals
based on the RCNN framework [14] . We show that if we
use a similar approach but substitute their global feature
vector with the feature vector obtained from subset feature
learning, then state-of-the-art performance can be achieved.

We present our results under the same setting as [26],
where the bird detection bounding box is unknown during
test time. This setting is fully automatic and hence more re-
alistic. Since we concentrate on feature learning we use the
detection results and parts features from [26], and substitute
their global feature vector with the one we learn from subset
feature learning.

The results in Table3 show that our proposed method
achieves a mean accuracy of77:2% when we use domain-
generic features and subset-speci�c features. This is a
considerable improvement over the previous state-of-the-
art system [26] which achieved a mean accuracy of73:2%.
An extra 0:3% performance is gained when we perform
progressive feature learning and �ne-tune the CNN model
again on the Caltech-UCSD dataset. Qualitative results are

Table 2. Mean accuracy on the Caltech-UCSD bird dataset of
subset-speci�c features learned using subset feature learning. An-
notated bounding boxes are used.

Method Mean Accuracy

Fine-tuned Decaf [26] 68.3%
IN-BS-ft + SF(k-means) 70.4%
IN-BS-ft + SF(SCNN) 72.0%

Table 3. Comparison to recent results on the Caltech-UCSD bird
dataset. Bounding boxes are not used.

Method Mean Accuracy

DPD-DeCAF [27] 44.9%
Part-based RCNN with� KP [26] 73.2%
IN-BS-ft + SF(k-means) with� KP 76.2%
IN-BS-ft + SF(SCNN) with� KP 77.2%
IN-BS-ft-CUB-ft + SF with� KP 77.5%

Groove Billed Ani

Groove Billed Ani

Vesper Sparrow

CardinalGroove Billed Ani

Groove Billed Ani

Green Violetear

Chuck Will Widow

Chuck Will WidowCardinal

Bank Swallow Belted_KingÞsher

Figure 5. Qualitative comparison between our proposed method
and the previous state-of-the-art approach [26] (part-based RCNN
with � KP ). The �rst row shows examples of test images, the
second row shows the corresponding predicted classes from our
proposed method, and the last row images shows the predictions
using [26]. It can be seen that the previous state-of-the-art ap-
proach made errors despite the large visual dissimilarities between
the test image and the predicted classes. In contrast, the proposed
approach provides the correct class labels in these cases.

shown in Fig.5 which highlight instances where the pre-
vious state-of-the-art methods provides an incorrect class
label despite large visual dissimilarities. In contrast, our ap-
proach provides the correct class label.

5. Conclusion

We have proposed a progressive transfer learning system
to learn domain-generic features as well as subset learning
to learn subset speci�c features. For progressive transfer
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learning, we have shown that it is possible to learn domain-
generic features for tasks such as �ne-grained image clas-
si�cation. Furthermore, we have shown that progressive
transfer learning of these domain-generic features can be
performed to learn target set speci�c features, yielding con-
siderable improvements in accuracy.

Finally, we have presented a subset feature learning sys-
tem that is able to learn subset-speci�c features. Using this
approach we achieve state-of-the-art performance of77:5%
for fully automatic �ne-grained bird image classi�cation,
the most dif�cult setting. We believe our proposed method
can be useful not only for �ne-grained image classi�cation,
but also for improving general object recognition. We will
examine this potential in future work.
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Abstract. We present the plant classi�cation system submitted by the
QUT RV team to the LifeCLEF 2015 plant task. Our system learns a
content speci�c feature for various plant parts such as branch, lea f, fruit,
ower and stem. These features are learned using a deep convolutional
neural network. Experiments on the LifeCLEF 2015 plant dataset show
that the proposed method achieves good performance with a score of
0:633 on the test set.
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1 Introduction

Fine-grained image classi�cation has received considerable attention recently
with a particular emphasis on classifying various species of birds,dogs and
plants [1, 3, 4, 11]. Fine-grained image classi�cation is a challenging computer
vision problem due to the small inter-class variation and large intra-class vari-
ation. Plant classi�cation is a particularly important domain because of th e
implications for automating Agriculture as well as enabling robotic agents to
detect and measure plant distribution and growth.

To evaluate the current performance of the state-of-the-art vision technol-
ogy for plant recognition, the Plant Identi�cation Task of the LifeCLEF chal-
lenge [5,7] focuses on distinguishing 1000 herb, tree and fern species. This is an
observation-centered task where several images from seven organs of a plant are
related to one observation. There are seven organs, referred to ascontent types,
and include images of the entire plant, branch, leaf, fruit, ower, stem or a leaf
scan.

Inspired by [4], we use a deep convolutional neural network (DCNN) approach
and learn a separate DCNN for each content type. We combine the content-
speci�c feature with a generic DCNN feature, which is trained using all of the
content types. This approach yields a highly accurate classi�cation system with
a score of 0:633 on the test set.
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Fig. 1. For each test sample, a domain-generic (GCNN) and subset-speci�c (SCNN)
feature is extracted. These two features are then concatenated to form a combined
feature vector.

2 Our Approach

Our proposed system consists of two main parts. First, we perform transfer
learning to learn a domain-generic feature termed as� GCNN from all plants
images (regardless of content type). Second, we manually cluster the dataset
into subsets based on content type and learn a feature speci�c to eachsubset
(� SCNN ). For each image we extract both domain-generic (� GCNN ) and subset-
speci�c (� SCNN ) features, these features are obtained from layer 20,l20, of
the deep network. The two feature vectors are then concatenated to form a
single feature vector as shown in Figure 1. These features are then used to
learn a multi-class linear SVM. Power and l2 norm are applied independently
for domain-generic feature and content speci�c feature prior to combining the
feature vectors.

2.1 Content Clustering

There are 7 pre-de�ned content types consisting of images from theentire plant,
branch, leaf, fruit , ower , stem or a leaf scan. In both the training and testing
phases all participants are allowed to use the indicated content.

We make use of the content type to learn a DCNN that is �ne-tuned (spe-
cialised) for a subset of the content types. However, because thereis a limited
number of images for each content type, we �rst group the most visually similar
content types toghether. In particular, we de�ne four subsets. The �rst subset
conists of the theentire plant and branch content types, the second subset con-
sists of the leaf and leaf scan content types, the third subset contains fruit and
ower content types, and the fourth subset consists of thestem only.

2.2 Deep Convolutional Neural Networks as Feature Representation

Krizhevsky et al. [8] recently achieved impressive performance onthe ImageNet
recognition task using CNNs, which were initially proposed by LeCun et al. [9]



for hand written digit recognition. Since then CNNs have received considerable
attention and in the Large-scale ImageNet Challenge 2014 (ILSVRC) the top
�ve results were all produced using CNN-based systems [10].

In this work we �ne-tune a general model for the task of plant classi�-
cation. The base model that we �ne-tune is the best performing model from
ILSVRC [12], referred to as GoogLeNet. GoogLeNet is a very deep neural net-
work model with 22 layers. It consists primarily of convolutional layers. We use
the output of the last convolutional layer l20, after average pooling, to obtain
our feature vectors.

2.3 Domain Speci�c Feature Learning

Transfer learning has usually been applied by �ne-tuning a general network,
such as the network of Krizhevsky et al. [8], to a speci�c task such as bird
classi�cation [13].

Inspired by the �ndings of Zhang et al. [13] we learn a domain-generic DCNN
for the task of plant classi�cation. This is achieved by applying transfer learning
on the parameters of the GoogLeNet model (learned from the large-scale Ima-
geNet dataset) using all of the training data for the plant classi�cation task. This
new DCNN provides domain-generic features for the task of plant classi�cation
and is referred to as the domain-generic DCNN. The only di�erence between the
pre-trained GoogLeNet model and the domain-generic DCNN is that the num-
ber of outputs for the last fully connected layer is changed to be 1; 000 which is
the number of training classes available. For each image we can then obtaina
domain-generic feature� GCNN from the last convolutional layer l20.

2.4 Subset Feature Learning as Content Speci�c Feature

A separate DCNN is learned for each of theK = 4 pre-de�ned subsets by �ne-
tuning the domain-speci�c model, described in Section 2.3. The aim is to learn
features for each subset that will allow us to more easily di�erentiate visually
similar content of plant species. As such, for each subset, we apply �ne-tuning to
the pre-trained GoogLeNet model. To train the k-th subset (Subsetk ) we use the
Nk images assigned to this subsetX k = [ x1; :::; xN k ], with their corresponding
class labels.

The only di�erence between these models and the pre-trained GoogLeNet
model is that the number of outputs for the last fully connected layer, of each
model, is set to the number of training classes in each subset. Transfer learning
is then applied separately to each network using backpropogation and stochastic
gradient descent (SGD). For each image belonging to thek-th subset a subset
feature vector � SCNN k is obtained by taking the output of the last convolutional
layer l20.



3 Experiments

In this section we present a comparative performance evaluation of our proposed
method on a validation set and the de�ned test sets. The provided training
dataset is split into two sets: roughly 10% of the total training data was used as
a validation set and the rest is used for training the models. The split is based
on observation id because �nal testing is also observation-based.

This results in 82,033 training images, including 21,746 for thebranch and
entire subset, 32,186 forfruit and ower subset, 23,234 for theleaf and leaf
scan subset and 4,867 for thestem subset. The validation set consists of 9,725
images.

We use Ca�e [6] for learning generic and subset speci�c features. Theopen-
source package LibLinear [2] is used to train the multi-class linears SVMs. The
SVM cost parameter C is set to 1 and all images are resized to 224� 224.

3.1 Results on Validation Set

First we assess our proposed method on the validation set. We conductedthree
sets of experiments which examine the e�ectives of the domain-speci�c feature
vector, the subset feature vector and the combination of these two feature vec-
tors.

The results on the validation set, shown in Table 1, demonstrate that the
combination of these two feature vectors provides a considerable performance
improvement. The combination of these two feature vectors achievesa mean
accuracy of 66:6%. This is an absolute improvement of 6.5 percentage points
over the domain-speci�c feature vector� GCNN which achieves a mean accuracy
of 60:1%. By comparison, the subset feature vector� SCNN k achieves a mean
accuracy of only 58:0%. We believe that the subset feature vector performs
worse than the domain-speci�c feature vector because of the limited number of
training images for each subset.

Table 1: Mean accuracy on the LifeCLEF 2015 Plant dataset of our proposed
method. Annotated content information is used.

Method Mean Accuracy

Domain Speci�c Feature 60.1%
Content Speci�c Feature 58.0%
Combined 66.6%

3.2 Results on Test Set

In this section, we present our submitted results for the LifeCLEF2015 plant
challenge. We submitted three runs:
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Chapter 5

Fine-Grained Classi�cation via Mixture of Deep

Convolutional Neural Networks

In the previous chapter, hierarchical learning with DCNN-based feature has shown impressive

performance on the �ne-grained classi�cation problem. However, the hierarchical system is

limited by the accuracy of assigning a class to its correct subset. Another disadvantage is that

either a learnt expert SVM classi�er or learnt a DCNN feature extraction was needed, so joint

training of features and a classi�er in a single DCNN framework was not possible.

In contrast to previous techniques, in this chapter we explore a formulation to perform joint

end-to-end training of multi DCNNs simultaneously. We introduce a novel system based on a

mixture of deep convolutional neural networks (MixDCNNs) that provides state-of-the-art per-

formance on two different �ne-grained tasks, birds and plants. The same pre-clustering process

as shown in chapter 4 is used to initialiseK DCNN parameters. The main difference between

the previous method and MixDCNNs is that the classi�cation decision from each component

is weighted proportionally to the con�dence of its decision, which is termed an occupation

probability. This allows us to de�ne a single network (MixDCNN) to perform classi�cation

in an end-to-end mechanism, and samples can be re-assigned to the most appropriate expert

network during the training process.

Empirical evaluations show that MixDCNN outperforms related approaches such as subset

feature learning introduced in the previous chapter, a gated DCNN approach similar to Jacobs

et al. [1991], and an ensemble of DCNNs. The results demonstrate performance improvements

over three challenging �ne-grained datasets including CUB-200-2011 from 80% using a single
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CONVOLUTIONAL NEURAL NETWORKS

DCNN model to 81.1% with MixDCNN, the large-scale bird dataset Birdsnap and the Plant-

CLEF dataset with 6.7% and 3.4% absolute percentage improvement respectively over a single

model.

The content of this chapter has been published and presented at the 2016 Winter Conference

on Applications of Computer Vision under the algorithm track as “Fine-Grained Classi�cation

via Mixture of Deep Convolutional Neural Networks”.
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Abstract

We present a novel deep convolutional neural network
(DCNN) system for �ne-grained image classi�cation, called
a mixture of DCNNs (MixDCNN). The �ne-grained im-
age classi�cation problem is characterised by large intra-
class variations and small inter-class variations. To over-
come these problems our proposed MixDCNN system par-
titions images intoK subsets of similar images and learns
an expert DCNN for each subset. The output from each
of theK DCNNs is combined to form a single classi�ca-
tion decision. In contrast to previous techniques, we pro-
vide a formulation to performjoint end-to-end training
of the K DCNNs simultaneously. Extensive experiments,
on three datasets using two network structures (AlexNet
and GoogLeNet), show that the proposed MixDCNN sys-
tem consistently outperforms other methods. It provides a
relative improvement of 12.7% and achieves state-of-the-art
results on two datasets.

1. Introduction

Fine-grained image classi�cation consists of discrimi-
nating between classes in a sub-category of objects, for in-
stance the particular species of bird or dog [2, 5, 8, 9, 23].
This is a very challenging problem due to large intra-class
variations (due to pose and appearance changes), as well
as small inter-class variation (due to only subtle differences
in the overall appearance between classes). See Fig.1 for
examples.

To cope with the above problems, many �ne-grained
classi�cation methods have performed parts detection [2, 5,
20, 24] in order to decrease the intra-class variation. Re-
cently, an alternative approach was introduced by Ge et
al. [13] where the images were �rst partitioned intoK non-
overlapping sets andK expert systems were learned. By
grouping similar images, the input space is being parti-
tioned so that an expert network can better learn the subtle
differences between similar samples. Expert selection was
performed by training a dedicated gating network which as-

Figure 1. Example images from the Birdsnap dataset [3] which
exhibits large intra-class variations and low inter-class variations.
Each column represents a unique class.

signs samples to the most appropriate expert network. This
approach has two downsides. Firstly, a separate gating net-
work (subset selector) needs to be trained. Secondly, the
expert networks are trained only to extract features, leaving
the �nal classi�cation to be performed by a linear support
vector machine (SVM).

We propose a novel system based on a mixture of
deep convolutional neural networks (DCNNs) that pro-
vides state-of-the-art performance along with several im-
portant properties. Similar to Ge et al. [13], we partition
the data intoK non-overlapping sets to learnK expert
DCNNs. However, unlike [13], the classi�cation decision
from the each expert is weighted proportional to the con�-
dence of its decision. This allows us to de�ne a single net-
work (MixDCNN), comprised ofK sub-networks (expert
DCNNs), that can be trained to perform classi�cation. This
is in contrast to [13], where each expert is used just for fea-
ture extraction. Our system has similarities to the gated net-
work approach proposed by Jacobs et al. [16], which utilises
a separately trained network to select the most appropriate
expert network.

The proposed MixDCNN system allows us to jointly
train the network, which has two advantages:(i) it obvi-
ates the need for a separate gating network, and(ii) samples
can be re-assigned to the most appropriate expert network



during the training process. Empirical evaluations show that
this approach outperforms related approaches such as sub-
set feature learning [13], a gated DCNN approach similar
to [16], and an ensemble of classi�ers.

The paper is continued as follows. In Section2 we
brie�y review recent advances in �ne-grained classi�cation
and overview approaches to learn multiple expert classi-
�ers, particularly within the �eld of neural networks. In
Section3 we present our proposed MixDCNN approach in
detail. Section4 is devoted to a comparative evaluation
against several recent methods on the task of �ne-grained
classi�cation. Conclusions and possible future avenues of
research are given in Section5.

2. Prior Work

Prior work for �ne-grained image classi�cation has con-
centrated on performing parts detection [2, 5, 20, 24] in
order to decrease the intra-class variation. The part-based
one-vs-one feature system [2] is an example of this, where
parts-based features are progressively selected to improve
classi�cation. An alternative is the deformable parts-model
which obtains a combined feature from a set of pre-de�ned
parts [24]. Chai et al. [6] proposed a symbiotic model where
part localisation is helped by segmentation and, conversely,
the segmentation is helped by parts detection. Zhang et
al. [24] extract pose-normalised features based on weak
semantic annotations to learn cross-component correspon-
dences of various parts.

Recent work has shown the effectiveness of DCNNs for
�ne-grained image classi�cation, but again, predominantly
to perform parts detection. Region proposal methods com-
bined with a DCNN were shown to more accurately localise
object parts [23]. Lin et al. [19] showed that a DCNN can
be trained to perform both parts localisation and visibil-
ity prediction, achieving state-of-the-art results on the CUB
dataset [22]. Although the above parts-based approaches
are fully automatic at test time, they require a large num-
ber of images to be manually annotated in order to train the
model.

To remove the need for time-consuming manual anno-
tations, recent work has explored ways to perform �ne-
grained classi�cation without using part annotations. Zhang
et al. [23] and Ge et al. [12] showed that, even without part
annotations, DCNNs can provide impressive performance
for �ne-grained classi�cation tasks. Of particular interest is
the approach of Ge et al. [10] which showed that the data
can be partitioned intoK non-overlapping sets and an ex-
pert feature extraction algorithm, utilising DCNNs, can be
trained for each of theK sets.

Learning algorithms which construct a set ofK classi-
�ers and make decisions by taking a weighted or average of
their predictions are often referred to as ensemble methods.
A simple ensemble approach calledbagginghas been used

to improve the overall performance of a system [4]. Bag-
ging manipulates the training examples to generate multi-
ple hypotheses. In this case, a set ofK classi�ers is learned
using a randomly selected subset of the training data. We
use this bagging approach on a set of DCNNs for a baseline
method and refer to it as an Ensemble approach (Section4).

Ensemble approaches, or learningK expert classi�ers,
has been explored by several researchers within the context
of neural networks. In 1991 Jacobs et al. [16] described a
gated network structure to learnK expert neural networks
and applied it to multi-speaker vowel recognition. The un-
derlying idea is to only allocate a small region of the in-
put space to a particular expert system. This was achieved
by havingK expert systems (neural networks) which were
allocated samples selected by a separate gating network.
In [16], the gating network determines the probability that a
sample is associated to one of theK expert systems.

More recently, Ge et al. [13] outlined a subset feature
learning (Subset FL) approach usingK expert DCNNs. The
data is partitioned intoK non-overlapping sets and for each
set an expert DCNN is learned to extract set-speci�c fea-
tures. A gating network is then used to extract only the most
relevant features from theseK DCNNs. Classi�cation is
then performed by training an SVM on these features, yield-
ing impressive performance for �ne-grained bird and plant
classi�cation [11]. An issue with this work is the reliance
of an independent gating networkG and the fact that fea-
ture extraction and classi�cation are treated as independent
steps.

3. Proposed Approach

We propose a novel mixture of DCNNs (MixDCNN)
to improve �ne-grained image classi�cation by partitioning
the data intoK non-overlapping sets and learning an ex-
pert classi�er for each set. This approach has similarities
to the gated neural network proposed by Jacobs et al. [16],
which has never been applied to DCNNs nor to the �ne-
grained classi�cation problem. As such, we also outline a
gated DCNN (GatedDCNN). An overview of these two ap-
proaches is given in Figure2.

The main idea behind the MixDCNN and GatedDCNN
approaches is to learnK expert networks,[S1; : : : ; SK ],
which make decisions about a subset of the data. This sim-
pli�es the space that is being modelled by each component.
Key to both approaches is being able to assign a sample to
the appropriate network.

A GatedDCNN assigns samples by learning a separate
gating neural network which produces the probability,� k ,
that the sample belongs to thek-th network. Learning this
gating neural network requires ground truth labels about
which sample should be assigned to a particular network,
which for our work is an open question. In contrast, a
MixDCNN assigns samples based on the con�dence of the
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Figure 2. GatedDCNN structure (top) and MixDCNN structure (bottom). The termOcc. Prob. refers to occupation probability (re-
sponsibility)� . In GatedDCNN, the gating network uses the image, the same input as each component (subset networks), to estimate� .
In contrast, MixDCNN estimates� without the need for an external network.

prediction from each network, which leads us to consider
� k to be the occupation probability of the sample for the
k-th network.

Before we describe these two approaches in more detail
we de�ne some notation. The output of a DCNN, trained for
classi�cation, is anN -dimensional vectorz of class predic-
tions, whereN indicates the number of classes. These pre-
dictions then are normalised by a softmax [18, 21] to give
the probability that the sample belongs to then-th class:

cn =
expf zn g

P N
j =1 expf zj g

(1)

In the approaches described below, we are most interested
in the vector of predictionsz prior to applying the softmax.

3.1. GatedDCNN

Inspired by [15, 16], we de�ne a GatedDCNN that con-
sists ofK components (DCNNs) and an additional gating
network. The overall structure of this network is shown in
Fig. 2a. In this arrangement, thek-th DCNN Sk is given
greater responsibility for learning to discriminate subtle dif-
ferences of thek-th subset of images, while the gating net-
work G is responsible for associating the imageI with the
most appropriate component. The gating networkG is a

�ne-tuned DCNN that is learned using the cross-entropy
loss to produce aK -dimensional vector of probabilities� .
Thek-th value denotes the probability that the input image
I is associated with thek-th component. We refer to this as
an occupation probability.

A fundamental dif�culty with training the GatedDCNN
is how to provide theT training labelsy . This label vector
is a K -dimensional label vector which indicates which of
theK subsets the sample belongs to. To deal with this issue
we consider two ways of estimating these labels. The �rst
approach is to initialise the labelsy using the partitioning
of the training images intoK subsets. The gated networkG
is then trained using these labels and theK DCNNs (com-
ponents) are then trained independently so thatSk is trained
exclusively with data from thek-th subset. The second ap-
proach is to use the above gated network (andK compo-
nents) as an initialisation and to iteratively retrain by:

1. FixingG, and then updating[S1; : : : ; SK ] using the as-
signments fromG.

2. Fixing the K components[S1; : : : ; SK ] and using
these to estimate new labelsy . The networkG is then
updated using these new labels.

The labelsy estimated in step 2 are obtained by taking



the network which is most con�dent about its decision. For-
mally, yt for thet-th training sample is given by:

yt = arg max
k=1 :::K

Ck;t (2)

whereCk;t is the best classi�cation result forSk using the
t-th sample:

Ck;t = max
n =1 :::N

zk;n;t (3)

Classi�cation with the GatedDCNN is performed using
a weighted summation of the classi�cation results from the
K components:

cn =
X K

k=1
ck;n � k (4)

whereck;n is the probability of the sample belonging to the
n-th class for thek-th component, and� k is the probability
that the sample is assigned to thek-th componentSk .

An issue with the GatedDCNN system is that a separate
gating network has to be trained to assign a sample to a
particular componentSk . This provides the further compli-
cation of having to estimate the labelsy in order to train the
gating networkG. In this paper the �rst GatedDCNN train-
ing approaches provides marginally better performance. In
the experiment section, we will report results based on the
�rst approach.

3.2. Mixture of DCNNs (MixDCNN)

We propose a mixture of DCNNs approach where the oc-
cupation probabilities� are based on the classi�cation con-
�dence from each component. An advantage of this struc-
ture is that we can jointly train theK DCNNs (components)
without having to estimate a separate label vectory or train
a separate gating networkG.

For MixDCNN, the occupation probability for thek-th
component is:

� k =
expf Ck g

P K
c=1 expf Ccg

(5)

whereCk is given by Eq. (3). This occupation probability
gives higher weight to components that are con�dent about
their prediction. The overall structure of this network is
shown in Fig.2b.

Classi�cation is performed by multiplying the output of
the �nal layer from each component by the occupation prob-
ability and then summing over theK components:

zn =
X K

k=1
zk;n � k (6)

This mixes the network outputs together and the probabil-
ity for each class is then produced by applying the softmax
function in Eq. (1). As a consequence our MixDCNN is
optimised using the cross-entropy loss1.

1Optimised in a mini-batch Stochastic Gradient Descent framework.

3.3. Differences Between MixDCNN and Ensembles

The aim of the MixDCNN approach is that each compo-
nent takes greater responsibility for a portion of the data
allowing each component to concentrate on samples (or
classes) that are more dif�cult to differentiate. This will
allow the MixDCNN to learn subtle differences for similar
classes. This is in contrast to an Ensemble approach which
randomly excludes a portion of the training data for each
DCNN. Therefore, the key difference between the proposed
MixDCNN approach and an ensemble of DCNNs (Ensem-
ble) is the use of the occupation probability. For training,
this means the MixDCNN approach does not randomly se-
lect the data. Instead, each sample is weighted proportional
to its relevance to each DCNNS1;:::;K . For testing, the
MixDCNN approach is able to adaptively calculate the oc-
cupation probability for each sample, whereas an Ensemble
approach will use pre-de�ned weights or, more commonly,
equal weights.

4. Experiments
4.1. Datasets

We present results on three �ne-grained image classi-
�cation datasets using two network structures. The three
datasets are the Caltech-UCSD-2011 (CUB200-2011) [22],
Birdsnap [3], and PlantCLEF 2015 [14]. Example images
are shown in Figures1 and3.

CUB200-2011 is a �ne-grained bird classi�cation task
with 11,788 images from 200 bird species in North Amer-
ica. This dataset has become ade factostandard for the
bird classi�cation task. Each species has approximately
30 images for training and 30 for testing. Birdsnap is a
much larger bird dataset consisting of 49,829 images from
500 bird species with 47,386 images used for training and
2,443 images used for testing. PlantCLEF 2015 is a large
plant classi�cation dataset that has seven content types. To
demonstrate the capabilities of the proposed MixDCNN ap-

CUB200-2011

PlantCLEF Flower

Figure 3. Examples from CUB-200-2011 and PlantCLEF Flower.



proach for the task of �ne-grained classi�cation, we analyse
its effectiveness on one content type, Flower. This portion
of the dataset consists of 28,705 images from 967 species.
We split this data into training and test sets. The training set
consists of 25,025 images from 967 species, while the test
set has 3,200 images from 801 species.

Both CUB200-2011 and Birdsnap have bounding box
annotations around the object of interest. We use this in-
formation to extract just the object of interest from the im-
age. PlantCLEF 2015 does not come with bounding box
information making it a more challenging dataset.

Prior work [13, 23] has shown the importance of transfer
learning for the �ne-grained image classi�cation problem.
Results have shown that training a DCNN from scratch for
either the �ne-grained CUB200-2011 or Birdsnap dataset
leads to over�tting on the training samples. As such, for
all the of our experiments we use pre-trained networks
from ImageNet [7] to provide a good initialisation for each
DCNN and then perform transfer learning. We consider this
to be our baseline and refer to it asDCNN-tl . All of our
networks are trained using Caffe [17] and partitioning was
performed using the Bob toolkit [1].

4.2. Comparative Evaluation
We compare the proposed MixDCNN approach against

four other related methods:(1) the baseline DCNN-tl,(2) an
ensemble ofK DCNNs, (3) an implementation of Gated-
DCNN, and(4) Subset FL [13]. Two network structures
considered are the well known AlexNet [18] and the Large
Scale Visual Recognition Challenge (ILSVRC) 2014 win-
ner GoogLeNet [21]. AlexNet is a deep network consisting
of 8 layers, while ILSVRC has 22 layers2. We follow the
same procedure as Ge et. al [13] to cluster the data. For
the AlexNet structure we use the output of the �rst fully
connected layer as features for clustering. For GoogLeNet
we use the output of the last layer, prior to classi�cation, as
features. In both cases linear discriminant analysis (LDA)
is applied to reduce the dimensionality toD = 128. In
our initial experiments, we variedD and results showed no
impact of that.

The results in Table1 show that the proposed MixDCNN
approach provides consistent improvement regardless of
network structure or dataset. MixDCNN provides the best
performance for all of the network and dataset combina-
tions, with the exception of the MixDCNN model using the
GoogLeNet structure on CUB. It provides an average rela-
tive performance improvement of 12.7% over the baseline
DCNN-tl approach, excluding CUB.

For the CUB dataset, using multiple expert networks
provides limited performance improvement. This is true
for all of the methods examined. We attribute this to the

2To prevent GoogLeNet from over-�tting we use a higher dropout rate
equal to 0.5 for the �nal loss layer, as opposed to the original setting of 0.4.

fact that CUB200-2011 is a small dataset consisting of
just 5,994 training images. This is an order of magnitude
fewer samples than other datasets such as Birdsnap. Fur-
thermore, applying transfer learning to GoogLeNet already
provides exceptional performance and so minimises the im-
provement introduced by the MixDCNN framework, or any
multi-expert approach.

The proposed MixDCNN method achieves state-of-the-
art results on the challenging Birdsnap and PlantCLEF-
Flower datasets. For Birdsnap the previous state-of-the-art
performance was 48.8% [3]. Applying transfer learning to
GoogLeNet already outperforms this prior art with an ac-
curacy of 67.4%. MixDCNN provides a further relative
performance improvement of 9.9%. For the PlantCLEF-
Flower dataset the baseline performance of DCNN-tl (using
GoogLeNet) is 48.7%. MixDCNN provides state-of-the-art
performance with a relative performance improvement of
7.0%.

The MixDCNN approach consistently outperforms the
Ensemble, GatedDCNN and Subset FL approaches. Inter-
estingly, it provides a considerable improvement over the
closely related GatedDCNN approach, with an average rel-
ative performance improvement of 9.1%. We attribute this
to the ability of the MixDCNN approach to adaptively re-
assign samples to the most appropriate expert network, in
spite of the original partitioning.

In our experiments, component sizes greater thanK = 6
were not considered as we could not store these in mem-
ory on a single GPU3. This highlights one of the limitations
with this technique as it currently requires all of the net-
works to be stored on a single GPU; future work should con-
sider how to extend the architecture across multiple GPUs.

5. Conclusion
We have proposed a novel mixture of deep neural net-

works, termed MixDCNN, which achieves state-of-the-art
performance for �ne-grained classi�cation. It provides an
average relative performance improvement of 12.7% and
has been shown to consistently outperform several related
methods: subset feature learning, GatedDCNN, and an en-
semble of classi�ers.

The key advantage of our proposed approach is the use
of an occupation probability that weights each sample pro-
portional to its relevance to each DCNNS1;:::;K . This ap-
proach obviates the need for a separate gating function and
highlights the importance of being able to adaptively weight
samples based on their relevance to a component (DCNN).

Future work will explore alternative methods for initial-
ising the clustering and its impact upon performance. For
instance, the impact of grouping images together in terms

3The GPU used in all our experiments was an Nvidia K40 Tesla with
12 Gb of memory.



Table 1. Comparison of the proposed MixDCNN approach against DCNN-tl, Ensemble, GatedDCNN and Subset FL on three datasets:
CUB, BirdSnap and PlantCLEF-Flower. Two network structures are used: AlexNet and GoogLeNet.

DCNN-tl Ensemble GatedDCNN Subset FL MixDCNN

AlexNet
CUB 68.3% 71.2% 69.2% 72.0% 73.4%

BirdSnap 55.7% 57.2% 57.4% 59.3% 63.2%
PlantCLEF-Flower 29.1% 30.2% 30.2% 31.1% 35.0%

GoogLeNet
CUB 80.0% 80.9% 81.0% 81.2% 81.1%

BirdSnap 67.4% 71.4% 70.1% 72.8% 74.1%
PlantCLEF-Flower 48.7% 50.2% 49.7% 51.7% 52.1%

of their pose rather than similar visual appearance. Further-
more, we will examine the role of the occupation probabil-
ity in two ways: (i) whether the responsibility for a sample
is shared between components, and(ii) deeper analysis of
how this occupation probability changes during the train-
ing process. Additionally, we intend on exploring different
methods for computing the occupational probability via al-
ternative aggregation techniques.
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Chapter 6

Exploiting Temporal Information for Fine-Grained

Object Classi�cation

Prior work and the previous three chapters treat the �ne-grained classi�cation task as a still-

image classi�cation problem and ignores the temporal information available from videos of

different �ne-grained classes [Anantharajah et al., 2014, Belhumeur et al., 2008, Kumar et al.,

2012, Liu et al., 2012, Parkhi et al., 2012].

In this chapter, we introduce the problem of video-based �ne-grained object classi�cation,

and explore several methods to exploit the temporal information on a new bird video dataset

we created. We �rst present a systematic study on several DCNN-based methods that at-

tempt to exploit temporal information such as 3D ConvNets [Tran et al., 2015], two-stream

DCNNs [Simonyan and Zisserman, 2014] and bilinear DCNNs [Lin et al., 2015]. We then

propose a novel adaptation of the bilinear DCNN approach for video bird classi�cation and

highlight the potential bene�ts that �ne-grained object classi�cation can gain by modelling

temporal information. In our proposed method the bilinear DCNN is adapted to extract local

co-occurrences by combining information from the convolutional layers of spatial and temporal

DCNNs.

We evaluate our method on the new and challenging video dataset of birds which contains

several challenges, such as clutter, large variations in scale, camera movement, and considerable

pose variations. Experiments show that by using the proposed approach, the performance is im-

proved from 23.1% (using single images) to 41.1%. The best results we obtained surpass all the

previous state-of-the-art video classi�cation methods including two-stream DCNN with 38.9%
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accuracy and C3D with 38.6%. By incorporating the latest object detection framework [Ren

et al., 2015], we can further boost the performance to 53.6%.

The content of this chapter has been submitted to the European Conference on Computer

Vision (ECCV) 2016 as “Exploiting Temporal Information for Fine-Grained Object Classi�ca-

tion”.
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Abstract. Fine-grained classi�cation is a relatively new �eld that has
concentrated on using information from a single image, while ignoring
the enormous potential of using video data to improve classi�c ation. In
this work we present the novel task of video-based �ne-grained object
classi�cation, propose a corresponding new video dataset, and perform
a systematic study of several recent deep convolutional neural network
(DCNN) based approaches, which we speci�cally adapt to the tas k. We
evaluate three-dimensional DCNNs, two-stream DCNNs, and bilin ear
DCNNs. Two forms of the two-stream approach are used, where spa-
tial and temporal data from two independent DCNNs are fused either
via early fusion (combination of the fully-connected layers) an d late fu-
sion (concatenation of the softmax outputs of the DCNNs). For b ilinear
DCNNs, information from the convolutional layers of the spatial an d
temporal DCNNs is combined via local co-occurrences. We then fusethe
bilinear DCNN and early fusion of the two-stream to combine the sp atial
and temporal information at the local and global level (Spatio- Temporal
Co-occurrence). Using the new and challenging video dataset of birds,
classi�cation performance is improved from 23.1% (using single images)
to 41.1% when using the Spatio-Temporal Co-occurrence system.Incor-
porating automatically detected bounding box location furthe r improves
the classi�cation accuracy to 53.6%.

Keywords: �ne-grained recognition, video classi�cation, deep learning ,
deep convolutional neural networks, spatio-temporal informati on.

1 Introduction

Fine-grained object classi�cation consists of discriminating between classes in a
sub-category of objects, for instance the particular species of bird or dog [2, 4,
7, 8, 26]. This is a very challenging problem due to large intra-class variations
caused by pose and appearance changes, as well as small inter-class variation
due to subtle di�erences in the overall appearance between classes [1].
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Prior work in �ne-grained classi�cation has concentrated on learning image-
based features to cope with pose variations. Initially such approaches used tra-
ditional image-based features such as colour and histograms of gradients [2]
while modelling the pose using a range of methods including deformable parts-
based approaches [4, 18, 27]. More recently, deep convolutional neural networks
(DCNNs) have been used to learn robust features [5], cope with large variations
by using a hierarchical model [9], and automatically localise regions of impor-
tance [10]. Despite the advances provided by these approaches, prior work treats
the �ne-grained classi�cation task as a still-image classi�cation problem and
ignores complementary temporal information present in videos.

Recent work on neural network based approaches has provided notable results
in video-based recognition [13, 21, 23, 25]. Karpathy et al. [13] demonstrated the
surprising result that classifying a single frame from a video using a DCNN was
su�cient to perform accurate video classi�cation, for broad categories such as
activity and sport recognition. Within the action recognition area, Simonyan
and Zisserman [21] incorporate optical ow and RGB colour information into
two stream networks. Tran et al. [23] apply deep 3D convolutional networks
(3D ConvNets) to implicitly learn motion features from raw frames and then
aggregate predictions at the video level. Ng et al. [25] employ Long Short-Term
Memory cells which are connected to the output of the underlying CNN to
achieve notable results on the UCF-101 [22] and Sports 1 million datasets [13].
To date, the above neural network based approaches have not been explored for
the task of video-based �ne-grained object classi�cation.

Contributions. In this paper, we introduce the problem of video-based �ne-
grained object classi�cation, propose a corresponding new dataset, and explore
several methods to exploit the temporal information. A systematic study is per-
formed comparing several DCNN based approaches which we have speci�cally
adapted to the task, highlighting the potential bene�ts that �ne-grain ed object
classi�cation can gain by modelling temporal information. We evaluate 3D Con-
vNets [23], two-stream DCNNs [21], and bilinear DCNNs [17]. Two forms of
the two-stream approach are used: (i) the originally proposed late-fusionform
which concatenates the softmax outputs of two independent spatial and temporal
DCNNs, and (ii) our modi�ed form, which performs early-fusion via combina-
tion of the fully-connected layers. In contrast to the two forms of the two-stream
approach, we adapt the bilinear DCNN to extract local co-occurrences bycom-
bining information from the convolutional layers of spatial and temporal DCNNs.
The adapted bilinear DCNN is then fused with the two-stream approach (early
fusion) to combine spatial and temporal information at the local and global level.

The study is performed on a new and challenging video dataset of birds,con-
sisting of 1,416 video clips of 100 species birds taken by expert bird watchers.
The dataset contains several compounded challenges, such as clutter, large vari-
ations in scale, camera movement and considerable pose variations. Experiments
show that classi�cation performance is improved from 23.1% (using single im-
ages) to 41.1% when using the spatio-temporal bilinear DCNN approach, which
outperforms 3D ConvNets as well as both forms of the two-stream approach.
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We highlight the importance of performing early fusion, either at the input layer
(3D ConvNets) or feature layer (adapted bilinear DCNN), as this consistently
outperforms late fusion (ie. the original two-stream approach). Incorporating au-
tomatically detected bounding box location further improves the classi�cation
accuracy of the spatio-temporal bilinear DCNN approach to 53.6%.

We continue the paper as follows. Section 2 describes the studied meth-
ods and our adaptations, while Section 3 describes the new video-basedbird
dataset. Section 4 is devoted to comparative evaluations. The main �ndings are
summarised in Section 5.

2 Combining Spatial and Temporal Information

In this section we �rst describe two baseline networks that make use of either
image or temporal information. We then outline the deep 3-dimensional convolu-
tional network [23], extend the two-stream approach [21] and adapt the bilinear
DCNN approach [17] to encode local spatial and temporal co-occurrences.

2.1 Underlying Spatial and Temporal Networks

Our baseline systems are DCNNs that use as input either optical ow (temporal)
or image-based features. The temporal networkT uses as input the horizontal
ow Ox , vertical ow Oy , and magnitude of the optical ow Omag combined
to form a single optical feature map O 2 Rh� w � 3, where h � w is the size of
the feature map (image). The spatial network S uses RGB frames (images) as
input. Both S and T use the DCNN architecture of Krizhevsky et al. [15] which
consists of 5 convolutional layers,Sc1; Sc2; : : : ; Sc5, followed by 2 fully connected
layers, Sfc 6 and Sfc 7, prior to the softmax classi�cation layer, So. The networks
are trained by considering each input frame from a video (either imageor opti-
cal ow) to be a separate instance, and are �ne-tuned to the speci�c task (and
modality) by using a pre-trained network. Fine-tuning [24] is necessary as we
have insu�cient classes and observations to train the networks from scratch (pre-
liminary experiments indicated that training the networks from scratch resulted
in considerably lower performance).

When performing classi�cation, each image (or frame of optical ow) is ini-
tially treated as an independent observation. For a video ofN f frames this leads
to N f classi�cation decisions. To combine the decisions, the max vote of these
decisions is taken.

2.2 Deep 3D Convolutional Network

The deep 3-dimensional convolutional network (3D ConvNet) approach [23],
originally proposed for action recognition, utilises 3-dimensional convolutional
kernels to modelL frames of information simultaneously. In contrast to optical
ow features where temporal information is explicitly modelled, the approach
implicitly models the information within the deep neural network structure.
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Fig. 1. Conceptual illustration of the spatio-temporal co-occurrence based approach.

This approach obtains state-of-the-art performance on various action recognition
datasets such as UCF-101 [22] and ASLAN [14]. The network is �ne-tuned for
our classi�cation task by taking a sliding window of L = 15 frames and moving
the sliding window one frame at a time; each sliding window is considered to
be a separate instance. This results inN f � 14 classi�cation decisions which are
combined using the max vote.

2.3 Spatio-Temporal Two-Stream Network: Early and Late Fusion

The two-stream network proposed for action recognition by Simonyan and Zis-
serman [21] uses the two independent spatial and temporal networksS and T .
The softmax output of these two networks is then concatenated and used asa
feature vector that is classi�ed by a multi-class support vector machine (SVM).
We refer to this network as Two-Stream (late fusion); it is conceptually illus-
trated in Fig. 2(a).

A potential downside of this approach is that fusion of spatial and temporal
information is done at the very end. This limits the amount of complementary
information captured as scores (or decisions) from the softmax classi�cation layer
are combined. To address this issue, we propose to combine the two streams of
information much earlier (early fusion) by combining the fc 6 outputs, Sfc 6 and
T fc 6; fc 6 is the �rst fully connected layer and is often used to extract a single
feature from DCNNs [5]. We refer to this modi�ed network as Two-Stream (early
fusion). See Fig. 2(b).

2.4 Joint Spatial and Temporal Features via Co-occurrences

We adapt the recently proposed bilinear DCNN approach by Lin et al. [17] via
combining the convolutional layers of the baseline spatial and temporal networks
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by calculating co-occurrences. The rationale behind is that di�erent species of
birds may have di�erent appearance and motion patterns and their combination.
Speci�cally, let the feature maps of the n-th layer of the spatial and temporal
networks be Sn 2 Rh� w � dn and T n 2 Rh� w � dn , where dn is the number of
dimensions for the feature map (number of kernels). The two featuremaps are
combined by calculating an outer product:

P i;j = vec
�
Sn

i;j T n
i;j

| �
(1)

where Sn
i;j 2 Rdn and T n

i;j 2 Rdn are the local feature vectors of the spatial
and temporal streams at location (i; j ), vec(�) is the vectorization operation,
and P 2 Rh� w � d2

n , with P i;j 2 Rd2
n being the co-occurrence feature at location

(i; j ). As such, the outer product operation captures the co-occurrence ofthe
visual and motion patterns at each spatial location. Max pooling is applied
to all the local encoding vectorsP i;j to create the �nal feature representation
F 2 Rd2

n . Finally, L 2 normalisation is applied to the encoding vector [17]. The
overall process is conceptually illustrated in Fig. 1.

The spatio-temporal bilinear DCNN feature is combined with the fc 6 spatial
and temporal features used forTwo-Stream (early fusion). This allows us to
combine the spatial and temporal information at both the local and global level.
The resultant features are fed to an SVM classi�er. See Fig. 2(c) for a conceptual
illustration. We refer this system as Spatio-Temporal Co-occurrence.

3 Dataset: Videos of Birds 100 (VB100)

To investigate video-based �ne-grained object classi�cation we proposea new
and challenging dataset consisting of 1,416 video clips of 100 bird speciestaken
by expert bird watchers. The birds were often recorded at a distance, introducing
several challenges such as large variations in scale, camera movement andcon-
siderable pose variations; a link to the dataset will be provided uponpublication.
See Fig. 3 for examples.

For each class (species of bird), the following data is provided: video clips
with activity annotations, sound clips, automated bounding box detection, as
well as taxonomy and distribution location. See Fig. 4 for an example.

The median length of a video is 32 seconds with the the shortest being8
seconds and longest being 118 seconds. Each class has on average 15 clips, with
the lowest being 6 and the highest being 23. Most videos (977) were captured
at 30 frames per second (fps), while 422 were captured at 25 fps, 10 at 60fps,
and 1 at 100 fps. Often the camera will need to move in order to track thebird,
keeping it in view. This form of camera movement is present in 798 videos, with
the remaining 618 videos obtained using static cameras.

4 Experiments

Two sets of experiments are presented in this section. In the �rst set (Section 4.1),
we evaluate the performance without taking into account whether each video clip
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Fig. 2. Overview of the Two-Stream and Spatio-Temporal Co-Occurrence approaches
for �ne-grained video classi�cation. In (a) the Two-Stream app roach useslate fusion,
where features are combined from the softmax layer. In (b) the Two-St ream approach
usesearly fusion, where features are combined from thefc 6 layer. The Spatio-Temporal
Co-Occurrence approach (c) combines the co-occurrence (bilinear DCNN) features with
the features from fc 6.

was recorded by a static or moving camera. In the second set (Section 4.2), we
study the e�ect of camera movement on performance. In all cases, to obtain a per
video classi�cation decision we use the max voting from the classi�edframes. For
the Spatio-Temporal Co-occurrence approach, initial experiments found that us-
ing the last convolutional layer n = c5 provided the best performance; this leads
to d = 65; 536 for the spatio-temporal bilinear features. The input frame size for
all networks is 224� 224. Training and testing is performed using Ca�e [12].

The dataset is divided into 730 training videos (train set) and 686 testing
videos (test set). Results are presented in terms of mean classi�cation accuracy.
Classi�cation accuracy is calculated on a per video basis and per class basis,
with accuracy = N c

p =N c, where N c
p is the number of correctly classi�ed videos

for the c-th class and N c is the number of videos for thec-th class. The mean
classi�cation accuracy is then calculated across all of the classes.
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4.1 Comparative Evaluation

We �rst investigate the performance of two independent networks forspatial and
temporal information: Spatial-DCNN and Temporal-DCNN. We then compare
the performance of 3D ConvNets [23] �ne-tuned for our bird classi�cation task
(referred to as 3D ConvNets-FT), the two-stream approach [21] (which combines
the Spatial-DCNN and Temporal-DCNN networks), and the spatio-temporal co-
occurrence approach. Finally we evaluate the performance of the co-occurrence
approach in conjunction with an o�-the-shelf bird detector/locator. For this we
use the recent Faster Region CNN [20] approach with default parameters learned
for the PASCAL VOC challenge [6]; only bird localisations are used, with all
other objects ignored. Examples of localisation are shown in Fig. 5.

Network Setup. The Spatial-DCNN uses the AlexNet structure pre-trained
on the ImageNet dataset [15] before being �ne-tuned for our bird classi�cation
task. It is trained by considering each frame from a video to be a separate
instance (image). Two variants of Spatial-DCNN are used: (i) randomly selecting
one frame per video clip, and (ii) using 5 frames per second (fps) from each video

Fig. 3. Example frames from video clips in the VB100 dataset. Each row shows four
sample frames for a unique class. The �rst frame in each row (left to righ t) shows an easy
situation, followed by three images showing variations in pose, scale and background.
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�+�D�O���D�Q�G���.�L�U�V�W�H�Q���6�Q�\�G�H�U�����6�H�S�W�H�P�E�H�U�����������������Z�H�H�N�V���D�J�R ������
�(�O�H�J�D�Q�W���7�H�U�Q���L�Q���I�O�L�J�K�W���Z�L�W�K���D���I�L�V�K�����¬�/�R�F�D�O�L�W�\���0�R�Q�W�H�U�H�\���%�D�\�����&�D�O�L�I�R�U�Q�L�D�����8�6�$�����8�Q�L�W�H�G���6�W�D�W�H�V����
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�� ���U�H�F�R�U�G�L�Q�J�V
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�(�P�D�L�O���W�K�L�V���S�D�J�H

�$�E�R�X�W���X�V���_���&�R�Q�W�D�F�W���X�V���_���)�$�4���_���3�H�U�P�D�O�L�Q�N

�6�H�D�U�F�K���+�H�O�S

�1�E�T���H�E�X�E���k�����������-�Q�E�K�I�V�]���k�����������2�%�7�%

Fig. 4. An example for the class Elegant Tern in the new video-based bird dataset.
Top-left: a still shot from one of the video clips. Bottom-left: s pectrogram created from
the corresponding audio �le. Right: taxonomy information abou t the class.
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Fig. 5. Examples of bird localisation (red bounding box) using the def ault settings of
Faster R-CNN [20]. Top row: good localisations. Bottom row: ba d localisations due to
confounding textures, clutter, small objects, and occlusions.

clip1. The Temporal-DCNN uses dense optical ow features computed from the
Matlab implementation of Brox et al. [3]. For the sake of computational e�cie ncy,
we have calculated the optical ow every 5 frames.

It is generally bene�cial to perform zero-centering of the network input, as
it allows the model to better exploit the recti�cation non-lineari ties and for
optical ow features provides robustness to camera movement [21]. Therefore,
for both Spatial-DCNN and Temporal-DCNN we perform mean normalisation
of the input data. For Spatial-DCNN we subtract the mean value for each RGB
channel, while for Temporal-DCNN mean ow subtraction is performed for the
temporal input.

For the two-stream approach we use two forms (as described in Section 2.3):
(i) early fusion, where the �rst fully connected features (fc6) from the Spatial-
DCNN (with 5 fps) and Temporal-DCNN networks are concatenated, and (ii) late
fusion, where the softmax output of the two networks is concatenated. For the
two-stream and the spatio-temporal co-occurrence approaches, the resultant fea-
ture vectors are fed to a multi-class linear SVM for classi�cation.

Quantitative Results. The results presented in Table 1 show that using
more frames from each video (ie. more spatial data) leads to a notable increase
in accuracy. This supports the use of videos for �ne-grained classi�cation. The
results also show that spatial data provides considerably more discriminatory
information than temporal data. In all cases, combining spatial and temporal in-
formation results in higher accuracy than using either type of information alone,
con�rming that the two streams of data carry some complementary information.

In contrast to the using late fusion in the standard two-stream approach,
performing early fusion yields a minor increase in accuracy (37:5% vs 38:9%)
and slightly exceeds the accuracy obtained by 3D ConvNets-FT (38:6%). Us-
ing the co-occurrence approach leads to the highest fusion accuracy of 41:6%.

1 The video clips were normalised to 5 fps, as this was computationally more e�cient.
Preliminary experiments indicated that using 5 fps leads to simi lar performance as
normalising at 25 fps.
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Table 1. Fine-grained video classi�cation results on the VB100 video d ataset.

Method Mean Accuracy

Spatial-DCNN (random frame) 23.1%
Spatial-DCNN (5 fps) 37.0%
Temporal-DCNN ( � = 5) 22.9%
Two-Stream (early fusion) 38.9%
Two-Stream (late fusion) 37.5%
3D ConvNets-FT 38.6%
Spatio-Temporal Co-occurrence 41.1%
Spatio-Temporal Co-occurrence + bounding box 53.6%

Fig. 6. Qualitative evaluation using t-SNE [19] to visualise the da ta for 10 classes
(indicated by unique colours). Left: using Spatial-DCNN featu res. Right: using Spatio-
Temporal Co-occurrence features. For both approaches several distinct clusters are
formed for each class. By using the co-occurrence approach fewer separated clusters
are formed, and the separated clusters tend to be closer together.

This highlights the importance of making use of the extra information from the
video domain for object classi�cation. Finally, using the Spatio-Temporal Co-
occurrence system in conjunction with an automatic bird locator increases the
accuracy from 41:6% to 53:6%. This in turn highlights the usefulness of focusing
attention on the object of interest and reducing the e�ect of nuisancevariations.

Qualitative Results. To further examine the impact of incorporating tem-
poral information via the co-occurrence approach, we visualise 10 classes with
features taken from the Spatial-DCNN and Spatio-Temporal Co-occurrenceap-
proaches. To that end we use the t-Distributed Stochastic NeighbourEmbedding
(t-SNE) data visualisation technique based on dimensionality reduction [19]. In
Fig. 6 it can be seen that both sets of features yields several distinct clusters
for each class. However, by using the co-occurrence approach fewer separated
clusters are formed, and the separated clusters tend to be closer together. This
further indicates that bene�t can be obtained from exploiting tempor al infor-
mation in addition to spatial information.
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Table 2. E�ect of static and moving cameras on performance, using a 21 class subset of
the VB100 dataset without bounding box detections. Temporal -DCNN (no zero-norm)
is trained without applying mean subtraction to the input featu res.

Network Camera Type Mean Accuracy

Spatial-DCNN Static 57.6%
Spatial-DCNN Moving 47.8%
Temporal-DCNN (no zero-norm) Static 28.9%
Temporal-DCNN (no zero-norm) Moving 23.7%
Temporal-DCNN Static 32.2%
Temporal-DCNN Moving 33.3%
Spatio-Temporal Co-occurrence Static 61.1%
Spatio-Temporal Co-occurrence Moving 53.7%

4.2 E�ect of Camera Type: Static vs Moving

In this section we explore how camera motion a�ects performance. Camera mo-
tion is a dominant variation within the VB100 dataset as it contains 618 video
clips recorded with a static camera and 798 video clips recorded witha moving
camera, which follow bird movement (eg., ight). Fig. 7 shows examples from
two videos of Elegant Tern recorded by static and moving cameras.

Previous work in action recognition [11, 16], rather than �ne-grained object
classi�cation, has presented conicting results regarding the impact of camera
motion. Jain et al. [11] showed that features which compensated for camera
motion improved performance, while Kuehne et al. [16] showed that thepresence
of camera motion either had little e�ect or improved performance.

We manually select 21 classes with videos recorded with and without cam-
era movement, and examine the performance of the Spatial-DCNN, Temporal-
DCNN and the Spatio-Temporal Co-occurrence approach. The setup of the net-
works is the same as per Section 4.1. The results in Table 2 show that Spatial-
DCNN is adversely a�ected by camera movement with the accuracy dropping
from 57.6% to 47.8%. This leads to a similar degradation in performance for the
Spatio-Temporal Co-occurrence approach: from 61.1% to 53.7%. We attribute
the degradation in performance of the spatial networks to the highly challenging
conditions, such as the di�erence between stationary and ying bird presented
in Fig. 7. By contrast, performance of Temporal-DCNN is largely una�ected.

We hypothesise that the Temporal-DCNN is robust to camera movement due
to the mean subtraction operation that can reduce the impact of global motion
between frames. To test the above hypothesis we re-trained the Temporal-DCNN
without mean subtraction (no zero-norm). This results in the performance for
the Static case reducing from 32.2% to 28.9%, while for the Moving case theper-
formance reduced considerably further: from 33.3% to 23.7%. This supports our
hypothesis and highlights the importance of the mean subtraction pre-processing
stage for temporal features in the presence of camera motion.
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Fig. 7. Top row: examples of video frames recorded by a static camera. Bottom row:
examples of video frames recorded by a moving camera, manually tracking the bird.

5 Main Findings

In this work, we introduced the problem of video-based �ne-grained object classi-
�cation along with a challenging new dataset and explored methods to exploit the
temporal information. A systematic comparison of state-of-the-art DCNN based
approaches adapted to the task was performed which highlighted that incorpo-
rating temporal information is useful for improving performance and robustness.
We presented a system that encodes local spatial and temporal co-occurrence
information, based on the bilinear CNN, that outperforms 3D ConvNets and
the Two-Stream approach. This system improves the mean classi�cationaccu-
racy from 23.1% for still image classi�cation to 41.1%. Incorporating bounding
box information, automatically estimated using the Faster Region CNN, further
improves performance to 53.6%.

In conducting this work we have developed and released the novel video bird
dataset VB100 which consists of 1,416 video clips of 100 bird species. This dataset
is the �rst for video-based �ne-grained classi�cation and presents challenges such
as how best to combine the spatial and temporal information for classi�cation.
We have also highlighted the importance of normalising the temporal features,
using zero-centering, for �ne-grained video classi�cation.

Future work will exploit other modalities by incorporating the audio (sound),
taxonomy information, and the textual description of the video clips.
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Chapter 7

Conclusion

The objective of this thesis has been to investigate a general and robust �ne-grained classi�-

cation system to answer the research questions “how can images and videos of sub-categories

in challenging scenarios be robustly classi�ed?” To achieve these objectives we have proposed

methods and modelling techniques for �ne-grained classi�cation that can be applied to multiple

�ne-grained tasks such as food, �sh, plant and bird classi�cation. This chapter summarise the

contributions made in this thesis. We then discuss potential usages and future research directions

for this area.

7.1 Summary of Contributions

The four contributions made in this thesis are:

(i) Proposed the novel local inter-session variability modelling (Local ISV) for �ne-

grained classi�cation. The �rst major contribution of this thesis is to answer the question of

modelling different instances of the same class under various environments. We implemented

inter-session variability modelling (ISV) and extended of this to model local regions for �ne-

grained (�sh and food) image classi�cation. The proposed Local ISV approach is able to

capture the crucial local identity information and also model and suppress noise locally. From

the experiment result of applying Local ISV to �ne-grained �sh classi�cation, the proposed

method provides a relative improvement of 38% over standard ISV on the QUT �sh dataset. We

then explored how advances in deep convolutional neural networks (DCNNs) could be used to

101
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improve the robustness of the local features used in the ISV framework. We proposed a layer-

restricted tuning method to reduce the dimensionality of the DCNN and used this to extract

local features. To do this we proposed a two-step retraining method to perform dimensionality

reduction on the original pre-trained DCNN model. Combining the local DCNN feature with

Local ISV, comparative experiments show that considerable performance improvements can be

achieved on the challenging Fish and UEC FOOD-100 datasets.

(ii) Novel hierarchical learning framework. The second contribution is to proposed a

novel hierarchical learning framework which �rst groups visually similar classes into the same

subset and then train an expert classi�er for each subset. This hierarchical-based approach

leverages the weights of both local and global information to generate more discriminative and

robust classi�ers for �ne-grained bird classi�cation. Evaluations on the challenging CUB-200

bird dataset, with parts detection algorithms such as DPM and DPD on top of our proposed

approach, shows that classi�cation accuracy can be increased from 64.5% to 72.7%, a relative

improvement of 12.7%. However, by using the ground-truth subset labels the best performance

can be achieved through this approach is 78.6% which indicates that performing more accurate

assignment of a sample to its subset can yield considerable performance improvements. To

�ll in this gap, we later improved this system by introducing subset feature learning into this

framework so that subset-speci�c features could be learnt and extracted. A combined represen-

tation which uses both the subset-speci�c and globally learned features was then used to achieve

state-of-the-art performance of 77.5% for fully automatic �ne-grained bird image classi�cation.

(iii) Novel Mixture of DCNNs. The third major contribution of this thesis is to propose a

novel mixture of DCNNs. This mixture of DCNNs extends the hierarchical learning framework

by probabilistically assigning a sample to a network, during both training and testing. This

allows us to jointly train the subset networks in an end-to-end manner. The �nal decision of each

sample is weighted by the occupation probability of each DCNN component. The occupation

probability obviates the need for a separate subset selector and highlights the importance of

being able to adaptively weight samples based on their relevance to a DCNN component.

Empirical evaluations showed that this approach outperforms previous subset feature learning

methods with an average relative performance improvement of 12.7% and achieves consistently

improved performance over several related methods such as an ensemble of classi�ers, Gated-

DCNN and subset feature learning.
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(iv) Video-based �ne-grained classi�cation. The fourth contribution is to demonstrate the

potential of exploiting temporal information to improve the robustness of �ne-grained classi�ca-

tion. We explore a new direction for �ne-grained classi�cation, �ne-grained video classi�cation.

In our proposed method, temporal information is captured by optical �ow and these motion fea-

tures from various videos are used to train a temporal DCNN while raw video frame pixels are

fed into a spatial DCNN to learn spatial information. We propose a novel adaptation of bilinear

pooling to extract local co-occurrences by combining information from the convolutional layers

of spatial and temporal DCNNs. Furthermore, we also introduced a bird video dataset VB100

which consists of 1,416 video clips of 100 bird species. A systematic comparison of state-of-

the-art DCNN based approaches is performed on the VB100 bird dataset. These experiments

demonstrate the effectiveness of our proposed novel spatial and temporal co-occurrence features

which outperform other previous state-of-the art algorithms including 3D ConvNets and the

Two-Stream approach.

7.2 Future Work

Although multiple aspects are covered in this thesis, there are still many to be explored in the

future work.

1. For �ne-grained bird classi�cation, numerous bird pictures are available on the internet.

Semi-supervised or unsupervised labelling could automatically annotate large numbers

of birds images and provide numerous training images. Such an approach would likely to

lead to considerable performance improvements as it would provide orders of magnitude

more data to train deep networks which are known to require an enormous amount of

labelled data.

2. Furthermore, multiple information source fusion is a interesting direction to explore.

We have shown the potential of combining temporal information for �ne-grained bird

classi�cation and much more work could be conducted in this area. Also, for plants or

�sh classi�cation tasks, prior knowledge about the geographical location of the image

being taken is extremely important to �lter out any irrelevant results.

3. For the algorithm perspective, our proposed subset-based learning system was able to

group bird classes in terms of visual appearance. It is interesting to explore alternative



104 CHAPTER 7. CONCLUSION

features such as pose and background information to initialise those clusters and observe

the impact for the �nal classi�cation results.

4. Close the gap between the �ne-grained classi�cation and general classi�cation is a trend

in the near future. Many proposed algorithms for �ne-grained image classi�cation have

been proven to be useful for other classi�cation tasks such as texture and scene classi�-

cation. Furthermore, recent proposed methods for �ne-grained bird classi�cation can be

trained without explicit parts annotations, which make the training objective same as the

general image classi�cation (with a single image class label).
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